
Thermistor Error Analysis

Since the thermistors are our reference system and provide truth data, they need
to be well characterized so that we can be confident in the data we receive. The
thermistors are arranged in a resistor divider system with an 18kΩ pullup resis-
tor denoted as R1. The voltage measurement is taken at the junction between
the pullup resistor and the thermistor.

Error sources and propagation to Rth

The resistor divider equation gives the equation for voltage measured (Vin) as
a function of supply voltage (Vsupply) and temperature (T ):

Vin = Vsupply
Rth

Rth +R1
(1)

Where Rth = f(T ).
Rearranging for Rth:

Rth =
VinR1

Vsupply − Vin
(2)

Now we can solve for the thermistor temperature as a function of the mea-
sured voltage using the thermistor equation:
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1

T25
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B25
ln(

Rth

R25
) (3)

Where T25 = 25◦C = 298.15K, R25 is the thermistor’s resistance at 25◦C,
equivalent to 10kΩ, and B25 is an empirical parameter supplied by the thermis-
tor’s manufacturer.

While we can take T25 as a precise measurement, R25, B25, and Rth have
associated uncertainty. Error in the temperature measurement creeps in from
these sources, including noise in the supply voltage, additional noise on the
input line, deviations in the thermistor response, and imperfections in R1, which
is only constructed to some certain tolerance (we have selected 1% precision
resistors here).

Because Rth is a derived parameter, the uncertainty in a measurement of
Rth is the root-square sum of the sensitivity of Rth to a given parameter times
the error in that parameter.

URth
=

√∑
x

(
∂Rth

∂x
δx)2 (4)

Partial derivatives of equation 2 with respect to its input parameters:

∂Rth

∂Vin
= − R1

Vsupply(Vin/Vsupply − 1)2
(5)
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∂Rth

∂Vsupply
=

R1Vin
V 2
supply(Vin/Vsupply − 1)2

(6)

∂Rth

∂R1
=

1

Vin/Vsupply − 1
(7)

Each of these parameters has an associated error that either comes from
biases (constant offsets) and random phenomena that need to be understood.

Vin has some bias error from the ADC that measures its value, about 0.4%
of the reading. Is also vulnerable to noise. We estimate that the noise is about
1mV .

The error in a direct measurement of Vin is:

δVin =
t√
N

√∑
i

(δSi)2 +

√∑
j

(δBj)2 (8)

Where δS errors are precision errors and δB errors are bias errors. N is the
number of measurements being taken and t comes from Student’s t-distribution
table for a given number of measurements.

N t
1 12.71
3 3.182
10 2.228
100 1.984

Table 1: t distribution vs number of samples N for 95% confidence

δR1 is much easier. Since we have 1% precision resistors with no randomness:

δR1 = 1%R1 = 1%18kΩ = 180Ω (9)

We’ll also assume that δVsupply also has a random error of 1mV and no bias
error, since it is easy to take a measurement of Vsupply that is accurate to less
than 1mV .

In addition, the thermistor has its own error, δRth. Nominally, this is only
1% of the thermistor’s value but it increases as temperature moves away from
25◦C.

Total uncertainty in Rth is the root-square sum of all these terms.

URth
=

√
(δRth)2 + (

∂Rth

∂Vin
δVin)2 + (

∂Rth
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∂Rth
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δR1)2 (10)
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Error propagation to T

Equation 3 is repeated here for clarity:

1

T
=

1

T25
+

1

B25
ln(

Rth

R25
) (11)

Raising both sides to −1 to find a direct equation for T :

T = [
1

T25
+

1

B25
ln(

Rth

R25
)]−1 (12)

Again, T is a derived parameter and the uncertainty in it depends on its
sensitivity to its parameters, Rth, R25, and B25.

∂T

∂B25
=

ln(Rth/R25)

B2
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)2

(13)

∂T

∂R25
=

1

B25R25( 1
T25

+ ln(Rth/R25)
B25

)2
(14)

∂T

∂Rth
=

−1

B25Rth( 1
T25

+ ln(Rth/R25)
B25

)2
(15)

The uncertainty in Rth was described in detail above, but it can be summa-
rized as:

URth
= f(Rth, Vin, Vsupply, R1) (16)

R25 is the thermistor’s temperature at 25◦. The manufacturer specifies it to
have 1% uncertainty here:

δR25 = 1%× 10kΩ = 100Ω (17)

B25 is a parameter from the datasheet and the uncertainty is manufacturer
specified:

δB25 = 1%× 3435K = 34.35K (18)

The uncertainty in T is again the root-square sum of these terms:

δT =

√
(
∂T

∂Rth
δRth)2 + (
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δR25)2 + (

∂T
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δB25)2 (19)
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