Design Report 04: Twin Sea Lion

Madison Junker*, Jacob Killelea[†] ASEN 4138, University of Colorado Boulder, December 14, 2018

*Student ID: 102736535 [†]Student ID: 105510162

Contents

Li	st of Figures	ii
Li	st of Tables	vi
I	Introduction	1
Π	Addendum to Report 3	1
II	I Landing Gear Layout Design	1
	III.A Sizing of the Landing Gear	1
	III.B Location of the Landing Gear	2
	III.B.1 Longitudinal Ground Clearance	2
	III.B.2 Lateral Ground Clearance	2
	III.B.3 Longitudinal Tip-Over	2
	III.B.4 Lateral Tip-Over	4
	III.C Gear Retraction Volume	5
IV	Aircraft Dimensions and Three-View	6
	IV.A Geometric Summary	6
	IV.B Aircraft Three-View	8
v	Moments of Inertia and Spin Characteristics	10
	V.A Moments of Inertia	10
	V.B Spin Characteristics	11
V	Stability and Control Derivative	13
	VI.A Longitudinal Stability Derivatives	13
	VI.B Lateral-Directional Stability Derivatives	13
	VI.C Longitudinal Control Derivatives	14
	VI.D Lateral-Directional Control Derivatives	14

VIIStatic Stability and One Engine Inoperative Analyses	15
VII.AStatic Longitudinal Stability	15
VII.BStatic Lateral-Directional Stability	15
VII.COne Engine Inoperative Stability Analysis	15
VIITransfer Function and Flying Quality Analyses	15
VIII.A Transfer Function Analysis	15
VIII.A. Longitudinal Transfer Functions	15
VIII.A. Lateral-Directional Transfer Functions	17
VIII.A.3Aileron Transfer Functions	18
VIII.A.4Rudder Transfer Functions	18
VIII.Frlying Qualities Analysis	18
VIII.B. Longitudinal Flying Qualities	18
VIII.B. Lateral-Directional Flying Qualities	19
IX Design Changes Needed to Meet Mission Requirements or Improve Mission Performance	19
IX.A Conclusions	19
IX.B Recommended Design Changes	19
X Appendix	20
X.A AAA: Stability and Control Derivatives	20
X.B AAA: Static Stability and One Engine Inoperative Analyses	45
X.C AAA: Transfer Function and Flying Quality Analyses	46

List of Figures

1	Landing gear of similar airplanes	4
2	AAA results for tip-over conditions	5
3	Top view of the Twin Sea Lion	8
4	Side view of the Twin Sea Lion	9

5	Front view of the Twin Sea Lion	9
6	AAA inertia inputs	11
7	Spin recoverability prediction, with the Twin Sea Lion's location marked	12
8	Airspeed response to elevator deflection transfer function	16
9	Angle of attack response to elevator deflect transfer function	16
10	Flight path angle response to elevator deflection transfer function	17
11	Short period response is slightly outside level 1 requirements	18
12	Wing lift curve slope	20
13	Wing lift coefficient at zero angle of attack	21
14	Horizontal stabilizer lift curve slope	21
15	Horizontal stabilizer downwash gradient	21
16	Horizontal stabilizer downwash angle	22
17	Horizontal stabilizer lift coefficient at zero angle of attack	22
18	Vertical stabilizer sidewash gradient	22
19	Vertical stabilizer downwash gradient	23
20	Vertical stabilizer downwash angle	23
21	Wing lift coefficient	23
22	Wing drag coefficients	24
23	Wing aerodynamic center	24
24	Horizontal stabilizer aerodynamic center	24
25	Vertical stabilizer aerodynamic center	24
26	Aerodynamic center shift due to fuselage effects	25
27	Power-off dynamic pressure ratio	25
28	Elevator related derivatives	25
29	Horizontal tail lift coefficient	25
30	Steady state lift coefficients	26
31	Angle of attack related derivatives	26

32	Aircraft aerodynamic center	26
33	Steady state lift coefficient	27
34	Steady state flight coefficients	27
35	Steady state drag polar calculations	27
36	Steady state thrust	27
37	Steady state pitching moment	28
38	Steady state pitching moment	28
39	Speed related derivatives	28
40	Speed related derivatives	28
41	Speed related derivatives	29
42	Speed related derivatives	30
43	Speed related derivatives	30
44	Angle of attack related derivatives	31
45	Angle of attack related derivatives	31
46	Angle of attack related derivatives	31
47	Angle of attack related derivatives	32
48	Angle of attack rate related derivatives	32
49	Angle of attack rate related derivatives	33
50	Angle of attack rate related derivatives	33
51	Pitch rate related derivatives	33
52	Pitch rate related derivatives	34
53	Pitch rate related derivatives	34
54	Fuselage geometry	35
55	Sideslip related derivatives	35
56	Sideslip related derivatives	35
57	Sideslip related derivatives	36
58	Sideslip related derivatives	36

59	Sideslip related derivatives	37
60	Horizontal stabilizer drag coefficient	37
61	Sideslip rate related derivatives	37
62	Sideslip rate related derivatives	38
63	Sideslip rate related derivatives	38
64	Sideslip related derivatives	39
65	Sideslip related derivatives	39
66	Roll rate related derivatives	40
67	Roll rate related derivatives	40
68	Roll rate related derivatives	41
69	Yaw rate related derivatives	41
70	Yaw rate related derivatives	41
71	Yaw rate related derivatives	42
72	Angle of attack related derivatives	42
73	Elevator related derivatives	42
74	Elevator related derivatives	42
75	Elevator related derivatives	43
76	Aileron related derivatives	43
77	Aileron related derivatives	43
78	Aileron related derivatives	44
79	Rudder related derivatives	44
80	Rudder related derivatives	44
81	Rudder related derivatives	44
82	Angle of attack related derivatives	45
83	Sideslip related derivatives	45
84	Rudder related derivatives	45
85	One engine out at cruise altitude and speed	46

86	One engine out at takeoff altitude and speed	46
87	Longitudinal transfer functions, frequencies, and damping	46
88	Lateral-directional transfer functions, frequencies, and damping response to ailerons	47
89	Lateral-directional transfer functions, frequencies, and damping response to rudder	47
90	Longitudinal mode frequencies, phugoid and short period flying quality levels	47
91	Roll mode performance and flying quality level	48
92	Spiral and dutch roll fling quality levels	48
93	Spiral and dutch roll fling quality levels	48

List of Tables

1	Summary of main gear and tire dimensions	1
2	Summary of nose gear and tire dimensions	1
3	Summary and clearance and tip-over requirements	1
4	Expanded gear dimensions.	6
5	Geometric design variables	7
6	All longitudinal stability derivatives	13
7	All lateral stability derivatives	14
8	All longitudinal control derivatives	14
9	All lateral control derivatives	14

Nomenclature

AAA	=	Advanced Aircraft Analysis Program
AR_W	=	Wind aspect ratio
b_w	=	Wing span
c_w	=	Wing chord
D_{t_n}	=	Nosewheel tire diameter
D_{t_M}	=	Main gear tire diameter
d_{ns}	=	Nose strut diameter
d_{ms}	=	Main strut diameter
d _{retract}	=	Gear bogey diameter while retracted
i _W	=	Wing incidence angle
l_f	=	Fuselage length
l_m	=	Length from x_{cg} to main gear
l_n	=	Length from x_{cg} to nose gear
n _m	=	Number of main gear
P_n	=	Maximum static load per nose bogey
P_m	=	Maximum static load per main bogey
S_W	=	Wing area
S_h	=	Horizontal stabilizer area
S_{v}	=	Vertical stabilizer area
TDPF	=	Tail Damping Power Factor
W_{TO}	=	Takeoff weight
Wretract	=	Gear bogey width while retracted
X	=	Distance of a component from the nose of the aircraft
Y	=	Distance of a component from the centerline of the aircraft
Ζ	=	Distance of a component from the belly of the aircraft
λ_W	=	Wing sweep angle

$\Lambda_{c/4w}$	=	Quarter chord sweep angle
Γ_W	=	Wing dihedral angle

 ϵ_W = Wing twist angle

I. Introduction

This is the final report on development progress of the Twin Sea Lion. This report covers landing gear configuration, ground clearance and tipover calculations, spin characteristics and the flying qualities of the Twin Sea Lion.

II. Addendum to Report 3

Fuel x_{cg} was incorrectly placed at 22 ft while the wing x_{cg} was at 23 ft. Since the fuel cannot be before the wing,

the fuel had to be moved back. This correction also improved the stability from 44% to 41%.

III. Landing Gear Layout Design

Tables 1, 2, and 3 summarize the results of the gear layout section.

 Table 1
 Summary of main gear and tire dimensions

D_{t_m} [in]	b_{t_m} [in]	n _{mt}	<i>l_m</i> [ft]	P_m [lb]	P_m [%]	d_{ms} [ft]	$L_{S_m}[ft]$
30	9	2	3	16,152	42.86	0.3587	6.15

 Table 2
 Summary of nose gear and tire dimensions

D_{t_n} [in]	b_{t_n} [in]	n _{nt}	<i>l_n</i> [ft]	<i>P_n</i> [lb]	P_n [%]	<i>d</i> _{ns} [ft]	$L_{S_n}[ft]$
23.4	6.5	2	18	5384.1	14.29	0.2244	5.36

Table 3 Summary and clearance and tip-over requirements

Requirement	Sea Lion Value [deg]	Relation	Requirement [deg]	Satisfaction
Longitudinal Ground Clearance	14.9	×	15	F
Lateral Ground Clearance	15.68	>	5	Т
Longitudinal Tip-Over	12.86	≯	15	F
Lateral Tip-Over	51.8	<	55	Т

A. Sizing of the Landing Gear

Designers chose a tricycle configuration as it allows the most passenger comfort while the plane is on the ground. A tricycle configuration also makes the plane easier to steer on the ground. These gears will be retractable, with three total struts. The nose gear and main gear each have two tires per strut. Tires were selected to be similar to other regional turboprops of a similar weight. These tires will have a dual arrangement. Definitions of P_n (Equation 1) and P_m (Equation 2) come from Presentation 26[8]. For the Twin Sea Lion, $l_n = 18$ ft $l_m = 3$ ft, so $P_n = 5384.1$ lb = 14.29%

and $P_m = 16152 \ lb = 42.86\%$.

$$P_n = \frac{W_{TO}l_m}{l_m + l_n} \tag{1}$$

$$P_m = \frac{W_{TO}l_n}{n_m(l_m + l_n)} \tag{2}$$

B. Location of the Landing Gear

Locations were originally chosen in order to put 10% of the weight on the nose gear with the main gear slightly behind the aircraft cg. Changes made in order to meet longitudinal ground clearance requirements took the nose gear loading up to 14.28%. This placed the main gear 3 ft behind the aircraft cg and the nose gear 18 ft in front of the aircraft cg.

1. Longitudinal Ground Clearance

The nose struts are 17 feet ahead of the apex of the wing and the empennage begins to sweep upwards 21 feet behind the main gear. The height above the ground of this corner is determined by the length of the struts so these struts were designed to ensure the required 15 degrees of clearance[8]. Clearance from the belly is calculated in Equation 3 as 5.36 feet. The belly is 9.5 inches below where the struts will begin, so the main landing gear struts are 6.15 feet long.

$$h = 21 \tan(\alpha) = 21 \tan(15 \, deg) = 5.36 \, ft \tag{3}$$

2. Lateral Ground Clearance

With 5.36 feet of clearance below the belly at the main landing gear, 32 feet from the main landing gear to the wingtip, and a wingtip height of 8.94 feet, the wingtips have a clearance of 15.68 degrees from the ground location of the main gear. This is greater than the 5 degrees required[8]. Propeller strikes are not a risk because the propellers are directly above the main gear.

3. Longitudinal Tip-Over

Longitudinal tip-over depends on the gear placement and tire separation as input to AAA in Figure 2. Nose strut diameter is 0.2244 feet and main strut diameter is 0.3587 feet as determined from Equations 4 and 5 respectively. As determined from the longitudinal clearance requirement, the main gear struts are 5.36 feet + 9.5 in = 6.15 ft long. The

nose gear strut is 5.36 feet long.

$$d_{ns} = (0.041 + 0.0025\sqrt{P_n}) = 0.2244 \tag{4}$$

$$d_{ms} = (0.041 + 0.0025\sqrt{P_m}) = 0.3587 \tag{5}$$

With two wheels on each strut align in the y direction, lateral tip-over depends on the y separation of the wheels. This separation needs to be slightly more than the sum of two half thicknesses of the tires and the strut diameter as seen in Equation 6.

$$Styn = 1.05(t_n + d_{ns}) = 0.8044$$
 (6)

$$Stym = 1.05(t_m + d_{ms}) = 1.1642$$
 (7)

Table	9.1	Typical	Landing	Gear	Wheel	Data	(n_	= 2)

Type	Wmo		Main Ge	ar		Nose	Gear	Nose Gear			
	10	Dtxpf	2Pm/WTO	PSI	nmt	Dtxpf	Pn/WTO	PSI	nnt		
	lbs	in.xin.				in.xin.					
Homebuilts	600	13x5	0.80	25	1	9x3.4	0.17	25	1		
	1,200	12x5	0.78	45	1	12x5	0.22	45	1		
	3,300	16x6	0.87	45	1	16x6	0.13	45	1		
Single Engine	1,600	15x6	0.80	18	1	15x5	0.20	28	1		
Prop. Driven	2,400	17x6	0.84	19	1	12.5x5	0.16	22	1		
	3,800	16.5x6	0.84	55	1	14x5	0.16	49	1		
Twin Engine	5,000	16x6	0.83	55	1	16x6	0.17	40	1		
Prop. Driven	8,000	22x6.5	0.88	75	1	17x6	0.12	40	1		
	12.000	26.6x7	0.84	82	1	19.3x6.6	0.16	82	1		
Agricultural	3,000	22x8	0.95	35	1	9x3.5*	0.05*	55*	1.		
	7,000	24x8.5	0.92	35	1	12.4x4.5*	0.08*	50.	1.		
					*Not	e: these as	e tailw	heel	data		
	10,000	29x7.5	0.85	35	1	25x7	0.15	35	1		
Regional Turbo-	12,500	18x5.5	0.89	105	2	22x6.75	0.11	57	1		
propeller Driven	21,000	24x7.25	0.90	85	2	18x5.5	0.10	65	2		
Airplanes	26,000	36x11	0.92	40	1	20x7.5	0.08	40	1		
Charles was a state of a state	44.000	30x9	0.93	107	2	23.4x6.5	0.07	77	2		
Business Jets	12,000	22x6.3	0.93	90	1	18x5.7	0.07	120	1		
	23,000	27.6x9.	3 0.95	155	1	17x5.5	0.05	50	2		
	39,000	26x6.6	0.92	208	2	14.5x5.5	0.08	130	2		
	68,000	34x9.25	0.93	174	2	21x7.25	0.07	113	2		

Fig. 1 Landing gear of similar airplanes

With all this input into AAA, Figure 2 gives $\phi_{gear_{cg}} = 12.86$ deg. The requirement for longitudinal tip-over is that $\phi_{gear_{cg}} > 15[8]$. This requirement is not met but is close enough to accept for the first round of design.

$$\phi = 12.86 \ deg \neq 15 \ deg \tag{8}$$

4. Lateral Tip-Over

Lateral tip-over is determined by the same AAA module as longitudinal tip-over. Figure 2 gives $\psi = 51.8$ deg. In order to pass this requirement $\psi \le 55$ deg[8]. This requirement is easily satisfied. The Sea Lion will not tip-over laterally.

$$\psi = 51.8 \ deg < 55 \ deg \tag{9}$$

Landing Gear Geometry: Flight Condition 1

Input Parameters										
X _{cg}		24.32	ft	Y _{cg}	- 0.11 ft		Z _{cg}	2.95	ft	
	X _{cg_E} 24.80 ft Z _{cg_E} 3.47 ft									
				Output	Parameters					
X _{gesar_{forw}}		6.00	ft	Z _{gear} farw	- 6.33 ft		Y _{gear_{aft}}	9.10	ft	
Ygearforw		0.00	ft	X _{gearaft}	26.50 ft		Z _{gear_{aft}}	-6.60	ft	
Ψ		51.8	deg	Zgessr _{crit}	- 6.60 ft		∮gear _{cg e}	9.58	deg	
X _{gear_{crit}}		26.50	ft	¢gear _{cg}	12.86 deg)	Coordina	tes Defined		
				Landing	Gear Table					
	#	Landing	j Gear	N _{side-by-side}	N _{inline}	D _{wheel}	ft	^w wheel ^{ft}		
	1	Nose G	ear: Down	2	1	1.95		0.54		
	2	Main G	ear: Down	2	1	2.50		0.75		
	3	Main G	ear: Down	2	1	2.50		0.75		
	×wheel ft		Y _{wheel} ft	Z _{wheel} ft	neel ^{ft} S _B whee		S _T ft wheel			
			6.00	0.00	-5.35	0.00		0.80		
			26.50	9.10	-5.35	0.00		1.16		
			26.50	-9.10	-5.35	0.00		1.16		

Fig. 2 AAA results for tip-over conditions

C. Gear Retraction Volume

Expansions of the tires in inches are given by Equations 10 and 11 for tire width and diameter respectively[8]. Total retraction volume is estimated using these new dimensions and modeling the set of tires as a cylinder.

$$w_{retract} = w + 0.04w + 3$$
 (10)

$$d_{retract} = d + 0.1d + 3 \tag{11}$$

Based on the above, each main gear tire was assumed to expand to a diameter of 36 inches and width of 12.36 inches

Table 4	Expande	d gear	dimensions.
---------	---------	--------	-------------

Gear	Individual D [in]	Individual W [in]	Total D [ft]	Total W [ft]	Volume $[ft^3]$
Nose	26.634	9.76	2.2195	1.851	7.1616
Main	36	12.36	3	2.4187	17.0967

in cruise. By approximating the two tires and the diameter of the gear strut as a cylinder with length equal to twice the width of the wheel plus the strut diameter and a diameter equal to the tire's expanded diameter, the retracted volume of the main gear is calculated to be the following on each side and is tabulated in Table 4.

$$V_{h_main} = 17.0967 ft^3$$
(12)

From Report 02[2], the Twin Sea Lion requires 10,679 pounds of fuel and the wings have room for 20,559 pounds or 407.76 ft^3 of fuel. This leaves 195.96 ft^3 across both wings or 97.98 ft^3 in each wing for things other than fuel. The retracted gear would take up 17.4% of the remaining gear volume, leaving a very reasonable 82.6% of the non-fuel wing volume for other materials like tanks, wires, and hydraulics.

The nose gear expands in a similar manner. Each expanded tire was calculated as 26.634 inches in diameter and 9.76 inches in width. Again accounting for both tires and the diameter of the nose gear strut, the retracted volume of the nose gear is as follows.

$$V_{h_n ose} = 7.1615 \ ft^3 \tag{13}$$

The total diameter of the nose gear cylinder is 2.2195 ft and the total length is 1.851 ft. From Report 02[2], the back half of the cockpit has 17.55 in or 1.4625 ft from the floor to the outer shell. This is too small for the nose gear to fit either way so the gear will be retracted as far as possible and a clam shell used to cover the remaining.

IV. Aircraft Dimensions and Three-View

A. Geometric Summary

Wing design variables and fuselage length were determined in Report 02[2], and tail areas were determined in Report 03[3].

$S_{W}[ft^2]$	<i>b</i> [ft]	ARw	c[ft]	λw	Λ.,/4[°]	Γ _w [°]	iw[°]	ew[°]	$l_{f}[f_{t}]$	$S_{t}[ft^2]$	$S_{\rm u} [ft^2]$
Swljrj			ew[it]			- W []	<i>w</i> L1	CW[]	<i>vj</i> [<i>j v</i>]	Sn[jr]	5, [],]
837	81.8	8	10.16	0.6	0	5	-1	0	47.58	190.0	137.0

 Table 5
 Geometric design variables

B. Aircraft Three-View

Fig. 3 Top view of the Twin Sea Lion

Fig. 5 Front view of the Twin Sea Lion

Note that while the length of the cockpit has been included in this model, the precise details are not included and it is simply replaced with a cylinder.

V. Moments of Inertia and Spin Characteristics

A. Moments of Inertia

The empty weight table seen in Figure 6 was populated with all empty weight groups and supplemented with the aircraft load split as much as possible with the available boxes. Note that the component names in the table were ignored in order to fit as many parts of the aircraft into the table as possible.

The actual names associated with each item are as follows.

1) Furr	ishings	12)	Nose gear
2) Othe	r fixed equipment	13)	Main gear 1
3) Engi	ne 1	14)	Main gear 2
4) Engi	ne 2	15)	Fuel 1
5) Prop	eller 1	16)	Fuel 2
6) Prop	eller 2	17)	Cargo
7) Win	g 1	18)	Baggage
8) Win	g 2	19)	Crew
9) Fuse	lage	20)	Trapped fuel and oil
10) Hori	zontal Stabilizer	21)	Passenger group 1
11) Vert	ical Stabilizer	22)	Passenger group 2

Items split into groups 1 and 2 denote equipment that is on the right and left side of the aircraft respectively.

		Clas	s II Empty V	Veight Mom	ent of Inertia	: Flight Conditio	n 1			
		Input Pa	rameters							
X _{cgE} 24.80 It	Y _{cgE}	0.00	ft	Z _{cg} E	:	3.47 ft				
Output Parameters										
I _{xxe_B} 200121.1 slug-ft	2 l _{yye} B	51880	1.2 slug-1	t ² I ₂₂ _{eB}	:	2 45693.0 slug	ı-ft ² I _{szene} B	4375.6	slug-ft ²	
	Class II Empty Weight Moment of Inertia Table									
Component	Weight Ib	l slug−ft ² ∞ _B	l ^{slug-ft² уу_В}	l slug-ft ² zz _B	l slug-ft ² ×z _B	X _{cg} ft	Y _{cg} ft	Z _{cg} ft		
Wing	83.4					41.63	1.96	4.21		
Horizontal Tail	5192.0					21.41	0.00	3.50		
Vertical Tail	1896.3					23.80	9.00	3.80		
Fuselage	1896.3					23.80	-9.00	3.80		
Nose Landing Gear	901.8					20.00	9.00	3.80		
Main Landing Gear	901.8					20.00	-9.00	3.80		
Propeller	1693.1					23.00	18.75	3.50		
Turboprop Engine	1693.1					23.00	-18.75	3.50		
Fuel System	4455.6					21.41	0.00	3.50		
Air Induction System	445.6					62.00	0.00	6.00		
Propulsion System	267.3					62.00	0.00	16.00		
Flight Control System	245.9					6.00	0.00	0.98		
Hydraulic and Pneumatic System	696.9					27.00	9.10	2.38		
Instruments/Avionics/Electronics	696.9					27.00	-9.10	2.38		
Electrical System	5348.6					23.00	18.75	2.00		
Air Cond./Press./Icing System	5348.6					23.00	-18.75	2.00		
0×ygen System	2020.0					33.00	-2.00	0.00		
Auxiliary Power Unit	605.0					28.92	0.00	3.00		
Furnishings	525.0					12.05	-0.56	5.00]	
Cargo Handling Equipment	188.4					21.41	0.00	3.50]	
Operational Items	875.0					28.92	21.57	5.00]	
Other Items	875.0					28.92	-21.57	5.00]	

Fig. 6 AAA inertia inputs

B. Spin Characteristics

The spin recovery criterion is described in Equation 14. S_{R_1} is the usable area of the rudder above the horizontal stabilizer. L_1 is the length from aircraft cg to the center of S_{R_1} . S_{R_2} and L_2 are similarly related. These parameters are taken from Presentation 27[9]

$$SRC = \frac{I_x - I_y}{b^2(W/g)} \tag{14}$$

$$TDPF = (TDR)(URVC) \tag{15}$$

$$TDR = \frac{S_F L^2}{S_W (b/2)^2}$$
(16)

$$URVC = \frac{S_{R_1}L_1 + S_{R_2}L_2}{S_w(b/2)}$$
(17)

$$\mu = \frac{W/S}{\rho g b} \tag{18}$$

Fig. 7 Spin recoverability prediction, with the Twin Sea Lion's location marked

Thanks to the tall, single vertical stabilizer, $S_R = 8.19 ft^2$ and $L_R = 42 ft$ at most aft CG. A small amount of the vertical stabilizer aside from the rudder is not blanketed, so $S_F = 5 ft^2$ and $L_f = 39 ft$. From these, $TDPF = 0.566 \times 10^{-4}$, $\mu = 6.93$ at sea level, and $SRC = 193 \times 10^{-4}$. From the above graphic, it is a apparent that the Twin Sea Lion is very

wing heavy and because its rudder is blanketed almost entirely by dirty air, it has next to no chance of recovery if a spin is encountered. However, this is acceptable for a FAR 25 certified aircraft.

In addition, the authors note that while no testing is planned, it may be possible to arrest a spin with differential thrust.

VI. Stability and Control Derivative

A. Longitudinal Stability Derivatives

All longitudinal stability derivatives and coefficients where determined from AAA using handout #2[5] and results from handout #1[4]. AAA printouts for this section can be found in Figures 33 through 54, with background calculations in Figures 12 through 32.

Steady State Coefficients	C_{L_1}	C_{D_1}	$C_{T_{x_1}}$	$C_{m_{T_1}}$	C_{m_1}
	0.1076	0.0177	0.0177	-0.0013	0.0013
Aerodynamic Speed Derivatives	C_{D_u}	C_{L_u}	C_{m_u}	$C_{T_{x_u}}$	$C_{m_{T_u}}$
	0	0.0586	0.0106	-0.0531	0.0038
Angle of Attack Derivatives	$C_{D_{lpha}}$	$C_{L_{lpha}}$	$C_{m_{\alpha}}$	$C_{m_{T_{\alpha}}}$	
	0.0972	6.1586	-3.5082	-0.0251	
Change of Angle of Attack Derivatives	$C_{D'_{lpha}}$	$C_{L'_{lpha}}$	$C_{m'_{lpha}}$		
	0	3.6077	-12.7779		
Pitch Rate Derivatives	C_{D_q}	C_{L_q}	C_{m_q}		
	0	14.1354	-32.5032		

Table 6	All longitudinal	stability	derivatives

B. Lateral-Directional Stability Derivatives

Calculations for lateral-directional stability derivatives were done in AAA as described in handout #2 with printouts from Figures 55 through 71.

Aerodynamic sideslip derivatives	$C_{y_{m eta}}$	$C_{l_{eta}}$	$C_{n_{\beta}}$	$C_{Y_{T_{\beta}}}$	$C_{n_{T_{\beta}}}$
	-0.9179	-0.3025	0.3995	0	0
Sideslip rate derivatives	$C_{y'_{meta}}$	$C_{l'_eta}$	$C_{n'_{meta}}$		
	-0.0066	-0.0017	-0.0029		
Roll rate derivatives	C_{y_p}	C_{l_p}	C_{n_p}		
	-0.1342	-0.5259	-0.0193		
Yaw rate derivatives	C_{y_r}	C_{lr}	C_{n_r}		
	0.7794	0.2663	-0.3678		

Table 7 All lateral stability derivatives

C. Longitudinal Control Derivatives

Table 8 All longitudinal control derivatives

Longitudinal control derivatives were calculated in AAA, resulting in Figures 72 through 75.

Longitudinal control derivatives	$C_{D_{\delta_e}}$	$C_{L_{\delta_e}}$	$C_{M_{\delta_e}}$
	0.0087	0.5482	-1.9416

D. Lateral-Directional Control Derivatives

Lateral-directional control derivatives were calculated in AAA as shown in Figures 76 through 81.

Table 9 All lateral control derivatives

Aileron control derivatives	$C_{y_{\delta_a}}$	$C_{L_{\delta_a}}$	$C_{n_{\delta_a}}$
	0	0.1629	-0.0044
Rudder control derivatives	$C_{y_{\delta_r}}$	$C_{L_{\delta_r}}$	$C_{n_{\delta_r}}$
	0.2717	0.0726	-0.1380

VII. Static Stability and One Engine Inoperative Analyses

A. Static Longitudinal Stability

With the updates from Handouts #1 through #4, the Twin Sea Lion now has a static margin SM = 56%. This is far in excess of the typical 10% to 15% that most aircraft have. The most forward cg in cruise comes directly after adding baggage when the airplane takes off. This gives 24.27 ft. The most aft cg in cruise comes after unloaded fuel and gives 24.83 ft. The initial calculations were done at 24.32 ft. The static margin at the most forward cg is then 57.44% and the is 52.07%. All of these are stable but none of of them are acceptable for controllability. Static margin could be improved by a revised horizontal stabilizer or a complete overhaul of fuselage design.

B. Static Lateral-Directional Stability

From Table 7, $C_{n_{\beta}} = 0.3995$. This is suitably positive for positive stability and so is an acceptable value for lateral directional stability.

C. One Engine Inoperative Stability Analysis

Thanks to substantial rudder area, the Twin Sea Lion appears to have no issues with an engine out. As seen in Figures 85 and 86, the Twin Sea Lion needs to only deflect its rudder by 0.28 degrees at cruise altitude and speed, or 0.82 degrees at takeoff speed and altitude. However, V_{mc} is 420 knots at cruise and 168 knots at takeoff. Both these numbers are above the normal flying speeds of the aircraft. This is something of a contradiction, because the rudder deflections given are not anywhere near their maximums. This indicates that in reality the rudder could be more useful than AAA is calculating.

VIII. Transfer Function and Flying Quality Analyses

A. Transfer Function Analysis

1. Longitudinal Transfer Functions

Longitudinal transfer functions were determined through AAA in Figure 87. The following printouts, Figures 8 through 10 through the actual transfer functions as produced by AAA.

Longitudinal Transfer Function Polynomial Form: $\frac{u(S)}{{}^{b}e}(S) = \frac{-565\ 5055\ S^{3} - 6591\ 7688\ S^{2} + 867350\ 4462\ S + 924232\ 6193}{594\ 2409\ S^{4} + 6860\ 1311\ S^{3} + 58549\ 8487\ S^{2} + 595\ 4493\ S + 164\ 2356}$ Factored Form: $\frac{u(S)}{{}^{b}e}(S) = \frac{-565\ 5055\ (S - 34\ 3625)(S + 44\ 9610)(S + 1\ 0578)}{594\ 2409\ (S^{2} + 11\ 5345\ S + 98\ 4123)(S^{2} + 0\ 0099\ S + 0\ 0028)}$ K_{gain} = 5627\ 480478

Fig. 9 Angle of attack response to elevator deflect transfer function

2. Lateral-Directional Transfer Functions

Lateral transfer functions were determined through AAA in Figure 88 for aileron and 89 for rudder.

- 3. Aileron Transfer Functions
- 4. Rudder Transfer Functions

B. Flying Qualities Analysis

1. Longitudinal Flying Qualities

Fig. 11 Short period response is slightly outside level 1 requirements

AAA predicts that the Twin Sea Lion will have excellent flying qualities. AAA lists the relevant coefficients in Figure 87. In the phugoid mode, $\omega_P = 0.053s^{-1}$ and $\zeta_P = 0.093$. Short period has $\omega_{SP} = 9.92s^{-1}$ and $\zeta_{SP} = 0.581$. The detailed transfer functions are in Figures 8, 9, and 10.

With the exception of short period frequency, all the flying qualities of the Twin Sea Lion are considered Level 1, indicating that they are acceptable without further modification. Short period frequency is considered Level 2. This means that it can probably be corrected. The abnormally high short period frequency is consistent with the abnormally high static margin of the Twin Sea Lion. Future revisions can probably correct both issues simultaneously by redesigning

the horizontal stabilizer.

2. Lateral-Directional Flying Qualities

Notably, the Twin Sea Lion is stable in spiral and dutch roll modes. This is unusual as most aircraft are either stable in dutch roll or spiral, but the unusual weight configuration distribution of the Twin Sea Lion, along with substantial dihedral and a very large tail mean that it manages stability in both modes.

IX. Design Changes Needed to Meet Mission Requirements or Improve Mission Performance

A. Conclusions

The Twin Sea Lion has begun to embody its name quite well. It is large, heavy, and likely quite loud. While its handling qualities are predicted to be quite fair, they are not perfect and many parts of the plane are perhaps over specialized. It has fallen short of its original range and payload requirements in order to maintain high cruising altitude and top speed. Whether this is a fair tradeoff is a decision for the pilot or operator, but the designers think they may have missed the mark. Nevertheless, the Twin Sea Lion represents a unique set of capabilities based around speed and altitude not normally seen in the turboprop class.

B. Recommended Design Changes

Large design changes ought to be considered for the Twin Sea Lion. Chief among them is whether the performance targets are feasible with current technology. In an effort to fly far, fast, and high, the aircraft has mostly become wing and engine at the expense of cargo and payload space. By flying shorter missions, more weight could be moved towards cargo and passengers instead of fuel. By altitude requirements, the wings and control surface sizes could be reduced. Finally, takeoff altitude and speed requirements would allow for reductions to maximum engine power. In addition, reworking the horizontal stabilizer could reduce pitch stiffness and make the plane more flyable overall.

However, these are all substantial and require significant extra work. Smaller changes might include moving to composite construction. An all carbon fiber aircraft would have savings not only from reduced structural weight, but all the efficiencies that follow as fuel and powerplant requirements also decrease. That room could be used for cargo, stronger landing gear, and better high lift devices to maintain the original goals of STOL performance and long range. In addition, fewer rivets would decrease drag moderately.

In either case, the authors believe that the first changes should be made to the empennage. The high aspect ratios of the horizontal and vertical stabilizers make the aircraft excessively stiff in pitch and yaw and smaller surfaces would likely suffice. If the elevator and rudder authorities are insufficient, the elevators and rudders could be made into all-moving tailplanes in order to keep adequate area for the aerodynamic surfaces.

References

[1] Junker and Killelea, "Design Report 01: Twin Sea Lion."

[2] Junker and Killelea, "Design Report 02: Twin Sea Lion."

[3] Junker and Killelea, "Design Report 03: Twin Sea Lion."

[4] Gerren, "Handout #1", https://canvas.colorado.edu

[5] Gerren, "Handout #2", https://canvas.colorado.edu

[6] Gerren, "Handout #3", https://canvas.colorado.edu

[7] Gerren, "Handout #4", https://canvas.colorado.edu

[8] Gerren, "Presentation 26", https://canvas.colorado.edu

[9] Gerren, "Presentation 27", https://canvas.colorado.edu

X. Appendix

A. AAA: Stability and Control Derivatives

							Win	g Lift Curve Slope: Flight C	ondition 1					
						Input	Parameters							
Attu	de 30000 #	G _{era} gm=0	6.3598	rad ⁻¹	AR _w	3.00	Yatat	0.00 ft	(gap/C) _a	2.00 %	w _{tw}	6.83 *		
ΔΤ	0.0 deg F	e ^{enguro}	6.3598	rad ¹¹	λ., [).60	(l/c), _w	12.00 %	(x _{gap} /C) _a	76.20 %				
U1	350.00 kts	S"	837.00	م م	Λ _{el}).0 deg	(1/c) _{1w}	12.00 %	D _{Ymayw}	6.83 n				
								Output Parameters			-		-	
м,	0.594	f _{anyw}	0.93		°°, [7.9041 rad ⁻¹	S _{weep}	751.13 n ²	C. Sup	5.2621 rad ⁻¹	CL _{WS GM-0}	4.5851 rad ⁻¹	c	5.3724 rad ⁻¹
ĸw	1.0003	с, _{о ФМ-0}	6.3598	rad	~ [7.9041 rad ⁻¹	AR _{weep}	7.49	CL _{wasciean}	5.3706 rad ⁻¹	Ci _{low} clean	5.3724 rad ⁻¹		
famo	0.91	0. _{0.w}	7.9041	rad ⁻¹	b _{eep}	75.00 ft	۶. Map	0.62	CL _{ws @M-0clean}	4.5851 rad ¹¹	с _{і. м.} ,	5.3706 rad ⁻¹		
		High Lift [evices Table											
n	High Lift Device ⁿ i	%	"o %	c/c _w %	° deg									
1	Single Slotted Flap 9.	D	55.5	30.0	0.0									

Fig. 12 Wing lift curve slope

							Wing Lift	Coefficient at Alpha = 0 de	g: Flight Condi	tion 1					
								Input Parameters							
Attu	de 30000 ft	Sw	837.00	e ²	A.,	0.0 deg	CL _{ew} d clean	5.3724 rad ⁻¹	ci _{ntel®M+0}	6.3598 rad ⁻¹	i.	-1.0 deg	(Vc) _{tw}	12.00 %	
ΔΤ	0.0 deg F	AR _a	8.00		Ci _{Ma dean}	5.3706 rad ⁻¹	C _{Low}	5.3724 rad ⁻¹	α _{erwN+0}	-3.0 deg	د _و	0.0 deg			
U1	350.00 kts	λ	0.60		°⊾ [5.3706 rad ⁻¹	G ^{erm} BM+0	6.3598 rad ⁻¹	α _{θwM=0}	-3.0 deg	(t/c),	12.00 %			
						Outp	ut Parameters						-		
м,	0.594	ε _α	0.0	deg	°., gu-o [5.3598 rad ⁻¹	α _{w_{o clean}}	-3.0 deg	$\Delta C_{L_{W_0 Nd}}$	0.0000	Cr ^{wo}	0.2812			
a _{erw}	- 3.0 deg	٩,,,	7.9041	rad ⁻¹	∿ [7.9041 rad ⁻¹	α _{wo}	- 3.0 deg	ΔCL _{afond}	0.0000	CL _{ow} f clean	0.1875			
a _{ow}	- 3.0 deg	9 ₉₂	7.9041	rad ⁻¹	~ <u>.</u> [-	0.4	a _{ow}	-2.0 deg	Cr _{we dean}	0.2812	Crow	0.1875			
		F	ligh Lift Devices 1	Table											
#	High Lift Device	1 %	η ₀ %	c/c _w %	⁵ deg	^{∆C} Lw₀									
		nput	Input	Input	Input	Output									
1	Single Slotted Flap	9.0	55.5	30.0	0.0	0.0000									

Fig. 13 Wing lift coefficient at zero angle of attack

	Horizontal Tail Lift Curve Stope: Flight Condition 1													
	Input Parameters													
Altiude	30000 #	9.00 BM-0	6.2504 rad ⁻¹	AR	7.00	Yataa	0.00 ft	ws	2.00 ft					
ΔΤ	0.0 deg F	о _{рь} өм-о	6.2504 rad ¹¹	λ _{és}	1.00	(Vc) _n	12.0 %	(gap/C) _e	0.00 %					
U1	350.00 kts	Sn	190.00 n ²	Λ ₀₄ ,	0.0 deg	(Vc) ₅	12.0 %	(x _{gap} /C) _e	70.00 %					
							Output Parameters			_				
м,	0.594	AR	6.62	b _{hop}	34.47 n	Cinese	5.3897 rad ¹	form,	1.00	9 ₉₁₀	7.7681 rad ⁻¹	۹.,	7.7681 rad ⁻¹	
Shap	179.58 f ²	2 ^{45mp}	1.00	K _{h(b)} + K _{b(h)}	1.12	fam _{ho}	1.00	9 _{96, 811-0}	6.2504 red ¹	9 ₉₉	7.7681 rad ⁻¹	Cine.	5.7070 rad ⁻¹	

Fig. 14 Horizontal stabilizer lift curve slope

	Horizontal Tail Downwash Gradient: Flight Condition 1													
							Input Parameters							
S,	Se 837.00 e ² And 0.0 dog Z ₁ A ₂ 2.00 t C _{1,60} 45851 nd ¹ AR ₂ 7.00 T ₁ 0.0 dog Z ₁ A ₁ 5.00 t													
AR,	8.00	X _{apaxa}	23.00 *	u	-1.0 deg	с., _{*5}	5.3706 red ⁻¹	3m	1.00	X _{apany}	60.00 #			
à.,,	0.60	Y _{affast} w	0.00 ft	CL _{We clean}	5.3706 rad ⁻¹	Sh	190.00 ft ²	Λ_{off_h}	0.0 deg	Yataxh	0.00 #			
_							Output Parameters							
Z _{sch}	6.00 ft	h.	35.11 tt	(ds/d0) _w	0.4274	(d6,/d0:) _{M+0}	0.3356	(d6/d0)p.of	0.3931	d6,/d0 _{clean}	0.3931	dē/d∝	0.3931	
#	High Lift Device 17,	rices Table	n_ %											
1	Single Slotted Flap 9	.0	55.5											

Fig. 15 Horizontal stabilizer downwash gradient

						Horiz	ontal Tail Downwas	h Angle: F	light Condition 1	-				
							Input Param	eters						
CL _{Ve}	clean 5.3706	rad ⁻¹	(qe'\qα) ^{№+0}	0.3356		deg	AR _w	8.00		Zach	6.00	t		
C _{Lwe}	@M=0 _{clean} 4.5851	rad ⁻¹	α. _{Wo} clean	-3.0	deg	Sw	837.00	ft ²	Z _{c,14} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.00	ft			
				Output Para	meters									
∆¤ _{ho}	Nd 0.0	deg	а _{ном=0}	0.7	deg	ān _o	0.8	deg						
		High L	.ift Devices T	able										
#	High Lift Device	'n	%	η ₀ %	^{∆C} Lw₀									
1	Single Slotted Flap	9.0)	55.5	0.0000									
1	Single Slotted Flap	9.0)	55.5	0.0000									

Fig. 16 Horizontal stabilizer downwash angle

	Horizontal Tail Lift Coefficient at Zero Horizontal Tail Angle of Attack: Flight Condition 1											
			Input Parameters									
Attude	30000 it S	5 _h 190.00 tt ²	Acid _{in} 0.0 deg	с _{ю_{№1} @М=0} 6.2504 rad ⁻¹	ε _{gh} 0.0 deg							
ΔΤ	0.0 deg F A	AR _h 7.00	Ci _{ho} 5.7070 rad ⁻¹	α _{o_{th M=0} 0.0 deg}	(^{<i>U</i>c)} _{r_h} 12.0 %							
U1	350.00 kts 24	n 1.00	o _{e_{rh}@M=0} 6.2504 rad ⁻¹	α _{ogn M=0} 0.0 deg	(^{1/c}) _{'n} 12.0 %							
			Output Parameters									
M1	0.594 °	Pa _n 7.7681 rad ⁻¹	ac _{ogn} 0.0 deg	α _{•_h} -0.4	Ci _{bo} 0.0000							
с _{і_{а,т}}	7.7681 rad ⁻¹	to _{rh} 0.0 deg	ε _{η,} 0.0 deg	aun _o 0.0 deg								

Fig. 17 Horizontal stabilizer lift coefficient at zero angle of attack

			Vertical Tail Sidewa	sh Gradier	nt: Flight Condition 1		
		_					
Sw	837.00 tt ²	$\Lambda_{c/4}_{W}$	0.0 deg	Z _{fc} w	2.50 ft	ŀr	55.00 ft
AR _w	8.00	Z _{c,¹⁴}	2.00 ft	h _f	2.50 ft	s,	137.00 tt ²
	Output Parameter	_					
(dσ/dβ) _v	-0.1264						

Fig. 18 Vertical stabilizer sidewash gradient

	Vertical Tail Downwash Gradient: Flight Condition 1													
_	Input Parameters													
Sw	837.00 n ² D.0 deg Z ₁ /4 Z.00 n C _{56,001} /6 ₀₀₀ 4.5851 red ⁻¹ AR ₄ 3.00 Г. 90.0 deg													
AR _w	8.00	X _{apax} ,	23.00 ft	i.,	-1.0 deg	с _{ь.,,,,,,}	5.3706 rad ⁻¹	λ ₁ .	0.80	X _{apany}	60.00 ft			
λ _w	0.60	Yafiset	0.00 ft	CL _{wonclean}	5.3706 rad ⁻¹	Sv	137.00 ft ²	Λ_{cl4}	5.0 deg	Z _{apasy}	15.00 ft			
					Outpu	t Parameters								
z _{sc,}	24.76 π (d#/d=\hu-d) 0.2379 (d#/d=\hu-d) 0.2787 d#/d=\hu-d) d#/d=\hu-d) 0.2787													

Fig. 20 Vertical stabilizer downwash angle

	Wing Lift Coefficient for Given Angle of Attack: Linear Range: Flight Condition 1													
	Input Parameters													
x 0.00 deg a _{ng} -3.0 deg c _{inguinen} c _{inguinen} 0.3706 rad ¹ c _{inguinen} 0.1875 c _{inguinen} 5.3724 rad ¹														
α. _{Wo} clean														
					Output Parameters			_						
α _{wp.off}	-1.0 deg	CL _{wclean}	0.1875	CL widnp.off	0.1875	CL _{wf}	0.1875	$\Delta C_{L_{hid}}$	0.0000					
CL _{wdnp.off}	0.1875	C _{Lw}	0.1875	CL wi clean	0.1875	ΔC _{L_{wg}_{Hd}}	0.0000							
		•						-						

Fig. 21 Wing lift coefficient

							-				
					Subsonic Wing Drag	Coefficient	Prediction: Flight Condition 1				
					Input	Parameters					
Attu	de 30000 tt	Sw	837.00 ft ²	$\Lambda_{LE_{W}}$	1.8 deg	(R _{LE} /c) _w	1.000 %	U _w	1.2	ε _{ρ,}	0.0 deg
ΔT	0.0 deg F	AR _w	8.00	(t/c) _w	12.00 %	Swetw	837.00 n ²	(x _{lan} /c) _w	15.0 %	C _{Dgapa}	0.00020
U1	350.00 kts	λ	0.60	k _{sand}	0.01333 10 ⁻³ ft	c, "op	10.20 ft	G _{ew}	7.9041 rad ⁻¹		
CL,	0.1875	$\Lambda_{c^{H}}_{w}$	0.0 deg	ē,	10.44 t	k	55.00 t	CL _{Wa}	5.3706 rad ⁻¹		
					Output Parameters					-	
М1	0.594	Re _{wien}	0.2590 × 10 ⁶	с _і "	0.0024	CD _{gaphid}	0.00020	с _{о_{Lw}}	0.0015		
Re	1.4677 × 10 ⁶	Rewout	5.3833 × 10 ⁶	ew	0.9514	CD _{Ogw}	0.0037				
	High Lift Devices Ta	able	-								
2	High Lift Device	C _D gap									
1	Single Slotted Flap	0.00020									

Fig.	22	Wing	drag	coefficients
		· · · · · · · · · · · · · · · · · · ·	ulug	coefficients

1 Single Slotted Flap

					Wing Aerodynamic	Center: F	light Condition 1				
					Input	Paramete	ers				
Attude	30000 tt	U1	350.00 kts	AR _w	8.00	$\Lambda_{c_{W}}$	0.0 deg	Y _{affset} w	0.00 ft	Γ _w	5.0 deg
ΔΤ	0.0 deg F	Sw	837.00 ft ²	λ. _w	0.60	X _{apasy}	23.00 ft	Z _{c,4}	2.00 ft		
					Output Parameters						
M1	0.594	ē,	10.44 ft	У _{тдс_w}	18.75 ^{ft}	X _{scw}	26.20 [#]	x _{acw}	0.2500		
q,	155.41	x _{mgcw}	0.59 ft	x _{ac v} /c,	0.2500	Z _{sc,w}	3.64 ft				

Fig. 23 Wing aerodynamic center

						Ho	rizontal Tail Aerodynamic Cente	r: Flight C	ondition 1					
					Input i	arame	ters							
Attu	ide 30000 #	30000 t U, 350.00 to A ^Q , 7.00 A _V , 0.0 to C, 0.0 dog V, 4, 0.00 t T, 0.0 dog												
ΔΤ	0.0 deg F	Sh	190.00 f ²	2 ₆	1.00	X _{apoy}	60.00 ft	z _{ç,4}	6.00 ft					
							Output Parameters							
м,	0.594	ą,	155.41 ^b	ō,	5.21 ft	Knoch	0.00 ft	У _{трер}	9.12 ft	X _{sch}	61.30	Zach	6.00 ft	

Fig. 24 Horizontal stabilizer aerodynamic center

						Verti	ical Tail Aerodynamic Center:	Flight Cor	dition 1				
					Input Parameters		,						
Attude	30000 #	U,	350.00 kts	AR,	3.00	$\Lambda_{e^{i\theta}v}$	5.0 deg	Zapezy	15.00 *				
ΔΤ	0.0 deg F	s,	137.00 n ²	h.,	0.80	Xapesy	60.00 [±]						
							Output Parameters						
Mi	0.594	q 1	155.41 h	ē,	6.79 ft	X _{mpc_v}	1.03	z _{ngcy}	9.76 ft	X _{acy}	62.73 ft	Z _{sc}	24.76

Fig. 25 Vertical stabilizer aerodynamic center

					Cal	culation of the	Aerodynamic Center Shift	due to Fusela	ge: Flight Condition 1				
							Input Parameters						
s.,	837.00 # ²	λ.,	0.60	Xuent	23.00 [#]	CL _{Vis @M=0clean}	4.5851 rad ⁻¹	CL _{alaf clean}	5.3724 rad ⁻¹	k	55.00 *	N _{fstations}	8
AR _w	8.00	Λ_{d4}_{w}	0.0 deg	Yofselw	0.00 n	CL _{Wisclean}	5.3706 rad ¹¹	Xanad	0.00 ft	w _{(w}	6.83		
					Outpu	ıt Parameters						_	
× _{ngra}	0.59 n	č"	10.44 *	Cr _{wop}	12.36 *	N a	23.11 ft	S	19.53 n	$\Delta \overline{x}_{ac_{\gamma}}$	-0.0451		
	Fuselage Table												
Section	× _{fus1} ^{ft A} fus ₁ ft ²												
1	0.0000 0.00												
2	4.5000 19.60												
3	15.0000 36.30												
4	47.0000 36.30												
5	55.0000 9.18												
6	60.0000 3.14												
7	66.0000 3.14												
8	66.1000 0.00												

Fig. 26 Aerodynamic center shift due to fuselage effects

						Power	off Dynamic Pressure Ratio:	Flight Con	dition 1					
							Input Parameters							
α	0.00 deg	8. ₁₀	0.6 deg	AR _w	8.00	L.	-1.0 deg	X _{Nb}	61.30 n	z _{wy}	24.76 t	α _{enas}	20.0	deg
8 ₁₀	0.8 deg	(ds/da) ^{boll}	0.2787	λw	0.60	$z_{q^{A}_{w}}$	2.00	z _{wh}	6.00 π	Number 0.	2]		
(ds,/dx) _{pof}	0.3931	S _w	837.00 # ²	× _{spes} ,	23.00 ft	C.,,	0.0037	X _{sev}	62.73 ⁿ	α _{min}	-5.0 deg]		
					Output Parameters					_				
ē,	10.44 ft	Δz_{min_h}	0.70 ft	η	1.000	Δz_{note}	0.71 ft	η,	1.000					
Zh _{sole}	4.18 ft	η _{bof}	1.000	Z _{Yuale}	22.85 ft	η _{γραί}	1.000							

						Eleva	tor Related Derivatives: Flig	ht Condition 1					
							Input Parameters						
Attude	30000 #	9.00 GM-0	6.2504 rad ⁻¹	λ ₄₁	1.00	(Vc) ₆	12.0 %	η.,	95.0 %	õ _{emin}	deg	(c _a /c _b) _{max}]%
ΔΤ	0.0 deg F	с _{ер, 8м-0}	6.2504 rad ⁻¹	Λ _{e4b}	0.0 deg	Ci _{ne}	5.7070 rad ⁻¹	ð,	-0.04 deg	ō _{ermox}	deg	Number c _s /c]
U1	350.00 kts	S _h	190.00 t ²	η _{'pof}	1.000	c _e /c _h	28.5 %	(gap/C) _e	0.00 %	Number å _e	2		
Sw	837.00 # ²	AR	7.00	(Vc),,	12.0 %	η _{ιο}	5.0 %	Balance,	0.05	(c _s /c _h) _{min}	56		
					Outpu	t Parameters							
М,	0.594	°~	7.7681 rad ⁻¹	Ke	1.0000	au _{eo}	0.4231	CI _{IG}	0.5482 red ⁻¹	с _{ье,}	0.5482 rad ⁻¹		
9. ₉₀	7.7681 rad ⁻¹	с. <u>,</u>	1.2955 rad ⁻¹	њ.	1.00	Cing.	2.4149 rad ⁻¹	αų _e	0.4231	c _{ie}	-0.0003		

Fig. 28 Elevator related derivatives

						Horiza	ntal Tail Li	ift Coefficient for Given Angle of	Attack: Li	near Range: Flight Condition 1		
						Inpu	t Paramete	rs				
	α.00	deg	(ds _i /dot) _{p.olf}	0.3931	αηο	0.0 deg	CINE BOOM	2.4149 rad ⁻¹	ō,	-0.04 deg	η _h	1.000
	0.8	deg	6	0.0 deg	Cina	5.7070 rad ⁻¹	c _e /c _h	28.5 %	η _{η_{p.off}}	1.000		
			_	Out	put Parameters		-		_			
	K _e 1.0000		z,	0.79 deg	α _{hp.off}	-0.8 deg	c _{in}	-0.0798				
1									-			

								Steady Stat	e Coefficients: L	ift: Flight Condit	on 1							
							Input Pa	rameters										
Attu	de 30000]# W	Garrent 376	i89.0 b	S.,	837.00	_ft ² α _n	3	.0 deg	λ	0.60		Z _{1,4}	2.00 *				
ΔΤ	0.0	deg F n	1.0	9	γ	0.0	deg AR	8.	.00	Λ_{ok_w}	0.0	deg	CL _{westeen}	5.3706 rad	1			
U1	350.00	kts α	0.0	0 deg	lu -	-1.0	deg ^Y a	····	00 [#]	X _{aparta}	23.00	ft	CL _{We GM+0clean}	4.5851 rad	1			
						Output Param	eters .											
м,	0.594	21	SHP _{set} 310	19 hp	∆C _{INprop}		¢	7.	.0 deg	CL,	0.1076							
q,	155.41] <u>h</u> K	Pauli 249	12 hp	ΣT_{mail}	2320	lb CT	z, -0	.0022									
										Propeller	Table							
		× _{prop} ft	Y _{prop} ft	Z _{prop} ft	D _{prop} ft	i _{prop} deg	⁶ 0.75 _{prop} deg	N _{blades} p	(w/R) _{0.3R} prop	‱/R) _{0.6R} prop	‱/R) _{0.9R} prop	SCHP _{set} hp	"prop	K _{loss} %	P _{avail} hp	T'c/prop	ds _u /d∝	C _N prop
#	Туре	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Output	Output	Output	Output
1	Propeller: On	22.00	9.01	4.00	9.25	7.0		5				1555	0.850	5.7	1246	0.0089	0.0000	0.0000
2	Propeller: On	22.00	-9.01	4.00	9.25	7.0		5				0	0.850	5.7	0	0.0000	0.0000	0.0000
1																		

Fig. 30 Steady state lift coefficients

						Angle of A	ttack Related Derivatives: L	ift: Flight Con	dition 1				
							Input Parameters						
Attude	30000 #	f _{anow}	0.93	i.	-1.0 deg	Z _{c/4w}	2.00 ft	Xapoy	60.00 ft	Γ _h	0.0 deg	ws	2.00 ft
ΔΤ	0.0 deg F	Sw	837.00 n ²	X _{aperar}	23.00 ft	Sh	190.00 # ²	Yatath	0.00 ft	η _{*poff}	1.000	D _{freew}	6.83 ft
U1	350.00 kts	AR _e	8.00	Yotot	0.00 ft	ARh	7.00	(Vc) _{rh}	12.0 %	9. _{9,6} .84-0	6.2504 rad ⁻¹		
9 _{9,4} 84+0	6.3598 rad ⁻¹	λ	0.60	(Vc),	12.00 %	λ _{in}	1.00	(b/c) ⁶	12.0 %	e ^{ole} Bn+c	6.2504 rad ⁻¹		
Pa _{abe} gerio	6.3598 rad ⁻¹	Λ _{σ4} ,	0.0 deg	(Vc) _{lw}	12.00 %	$\Lambda_{o4_{h}}$	0.0 deg	z _{s/4} ,	6.00 ft	f _{oreh}	1.00		
				-			Output Parameters					-	
М1	0.594	°~,	7.9041 rad ⁻¹	Ci _{ba}	5.3724 rad ⁻¹	°~	7.7681 red ⁻¹	ds¦/dα	0.3931	Citono empen	5.3724 rad ⁻¹	Ci _{la}	6.1586 rad ⁻¹
ā,	155.41 ^b	Ci _{lwa deen}	5.3706 rad ⁻¹	ĸa	1.0003	Z _{ach}	6.00 [#]	C	5.7070 rad ⁻¹	Ci _o clean poli	6.1586 rad ⁻¹		
o _{ow}	7.9041 rad ⁻¹	CL _{Pwf clean}	5.3724 rad ⁻¹	9 _{9m}	7.7681 rad ⁻¹	dš _t /d¤ _{clean}	0.3931	с. _{т.,}	0.7862 rad ⁻¹	Ci _{n pol}	6.1586 rad ⁻¹		
с _{ели}	7.9041 rad ⁻¹	C	5.3706 rad ⁻¹	9 ₉₆	7.7681 rad ⁻¹	(ds,/da)hall	0.3931	CL _{ing} no empidean	5.3724 rad ⁻¹	Ci _{lectean}	6.1586 rad ⁻¹		
		High Lift D	evices Table										
# High Li	ft Device ^η i	%	η ₀ % c/c _w %	å deg									
1 Single	Slotted Flap 9.	D	55.5 30.0	0.0									

Fig. 31 Angle of attack related derivatives

						Airpla	ane Aerodynamic Center: Fli	ght Conditio	n 1				
							Input Parameters						
Attude	30000 #	AR _w	8.00	X _{apera}	23.00 ft	X _{acn}	61.30 [#]	Sh	190.00 ft ²	z _{ogg}	3.47 *	Z _{cp_{fed}}	n.
ΔΤ	0.0 deg F	à	0.60	X _{eco}	26.20 ft	c.,,,,	5.7070 rad ⁻¹	Xupun	60.00 ft	Xag	24.32	X _{og_{at}}	ft
U1	350.00 kts	Λ_{04}	0.0 deg	c	5.3724 rad ⁻¹	(d6,/dot) _{p.of}	0.3931	$\Delta \widetilde{\mathbf{x}}_{m_{\gamma}}$	-0.0451	Z.9	2.95	Z _{og_{añ}}	ft
S _w	837.00 # ²	i.	-1.0 deg	Ci _{spol}	6.1586 rad ⁻¹	η _{boff}	1.000	X _{og}	24.80 ft	X _{og_{fad}}	n.		
							Output Parameters						
М1	0.594	ē,	10.44	x _{ww}	0.2500	x _{ww}	0.2049	×**	25.73 n	x _{wpof}	0.6399	X _{ac}	30.27 ft
ā,	155.41	x _{equin}	0.59 *	X _{Wwfpd}	0.2049	X _{Niefpol} f	25.73 t	x _{wi,}	3.6121	x _∞	0.6399		

Fig. 32 Aircraft aerodynamic center

	Steady State Coefficients: Lift Flight Condition 1																	
							Input Pa	irameters										
Attu	de 30000] #	W _{current} 376	i89.0 b	s,	837.00	_ft ² α,		3.0 deg	λ _w	0.60		Z _{c/4} w	2.00 *				
ΔΤ	0.0	deg F	n 1.0	0 0	γ	0.0	deg Al	ح 8	.00	Λ_{o4}_{w}	0.0	deg	CL _{Man clean}	5.3706 rad	-1			
U1	350.00	kts	a. 0.0	0 deg	L.	-1.0	degY	···. 0	.00 #	X _{apanw}	23.00	t.	CL _{We GM-0clean}	4.5851 rad	d.			
						Output Param	eters											
м,	0.594]	SHP _{set} 310	19 hp	ΔC _{i.Nprop}		•	7	.0 deg	с _{ь,}	0.1076							
q,	155.41	in a start a s	ΣP _{ausi} 249	12 hp	ΣT _{auli}	2320	b C1	z, +(0.0022									
										Propeller	Table							
		× _{prop} ft	Y _{prop} ft	Z _{prop} ft	D _{prop} ft	i _{prop} deg	⁶ 0.75 deg	N _{blades} p	(w/R) _{0.3R} prop	(6/R) _{0.6R} prop	₩/R)0.9Rprop	SCHP _{set} hp	¹⁷ prop	K _{loss} %	P _{avail} hp	T'c/prop	ds _u /d∝	C _N prop
#	Туре	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Output	Output	Output	Output
1	Propeller: On	22.00	9.01	4.00	9.25	7.0		5				1555	0.850	5.7	1246	0.0089	0.0000	0.0000
2	Propeller: On	22.00	-9.01	4.00	9.25	7.0		5				0	0.850	5.7	0	0.0000	0.0000	0.0000
1																		

Fig. 33 Steady state lift coefficient

Fig. 34 Steady state flight coefficients

				Class I Current Flight Condition Drag F	Polar: Flight Condition 1	
			Input	Parameters		
Wto	37689.0 b	R.w 8.00	a -2.3010	c -0.0866	۵C _{0,0} 0.0005	Ci _{picimax} 3.0000
Sw	837.00 ft ² λ _α		b 1.0000	d 0.8099	Ct _{platmin} 0.0000	
			Output Parameters	_	_	_
e	0.8560 f	20.83 ft ²	ē _{oŋ} 0.0254	B _{DP} 0.0465	CL _{@CDmin} 0.0000	
Swet	4165.58 t ²	0 _{°clean} 0.0249	A _{DP} 0.0000	Co _{min} 0.0254		
					-	

				Steady	State Coeffcient	t due to Thrust i	n X-direction: Fli	ght Condition 1	_		
						Input Param	eters				
Attu	de 30000] t t ∆⊺	0.0	deg F	U1	350.00	kts 0	. [0.00 deg	Sw	837.00 ft ²
				0ι	ıtput Parameter	'S					
M1	0.594] •	Σρταρ 7.0	deg	ΣP _{mull}	2492	hp 4	125	7.0 deg		
q ₁	155.41	$\frac{lb}{\hbar^2}$ Σ	SHP _{set} 310	19 hp	ΣT _{anil}	2320	в	^{کتر} م [0.0177		
					Propeller 1	lable					
		SHP _{set} hp	^ח prop	i _{prop} deg	Ψ_{prop} deg	K _{loss} %	P _{avail} hp	T _{avail} Ib	T'c/prop	CT×1	
#	Туре	Input	Input	Input	Input	Input	Output	Output	Output	Output	1
1	Propeller: On	1555	0.850	7.0	0.0	5.7	1246	1160	0.0089	0.0089]
2	Propeller: On	0	0.850	7.0	0.0	5.7	0	0	0.0000	0.0089	7

Fig. 36 Steady state thrust

	Steady State Pitching Moment Coefficient due to Thrust: Flight Condition 1																	
							Input Pa	rameters										
Attu	ide 30000]#	U, 350	1.00 kts	Z _{cg}	2.95	n AF	ح 8.	00	α	0.00	deg		-1.0 deg				
ΔΤ	0.0	deg F	X.,9 24.	32 ^{tt}	S.,	837.00	π ² λ _w	0.	60	α	-3.0	deg						
								Outp	ut Parameters									
М1	0.594] :	ē., 10.	44 *	ΣP _{anal}	2492	hp ΔC	-0	.0013	dzī	0.76	π	Φ <u>Σ</u> Τ	7.0 deg	c _{my1}	-0.0013		
ą,	155.41] <u>*</u>	ESHP _{eet} 310	19 hp	ΔC _{m_{Nprap}}	0.0000	דז	aat 23	320 lb	dzn	2.43	π	c	0.0000				
							_			Propeller *	lable							
		× _{prop} ft	Z _{prop} ft	D _{prop} ft i	prop deg	¥ _{prop} deg	^C N _n rad ⁻¹ prop	^f Inflow	d¢ _u /d∝	SHP _{set} hp	^η prop	CD propwm	CD prop stop	K _{loss} %	d _T ft	d _N ft	P _{avail} hp	T'c/prop
n	Туре	Input	Input	Input I	nput	Input	Input	Input	Input	Input	Input	Input	Input	Input	Output	Output	Output	Output
1	Propeller: On	22.00	4.00	9.25 7	.0	0.0	0.0000	1.0402	0.0000	1555	0.850	0.0000	0.0000	5.7	0.76	2.43	1246	0.0089
2	Propeller: On	22.00	4.00	9.25 7	.0	0.0	0.0000	1.0402	0.0000	0	0.850	0.0000	0.0000	5.7	0.76	2.43	0	0.0000

Fig. 37 Steady state pitching moment

State Coefficients: Pitching Moment: Flight Condition 1

Fig. 38 Steady state pitching moment

			Speed Rela	ted Derivatives	: Drag: Flight Conditio	n 1		
				Input Param	eters			
Altitude	30000 It	ΔΤ	0.0 de	egF U₁	350.00	kts ∂C _D /∂h	0.000	
	0	itput Paramete	rs					
M ₁	0.594	C _D	0.0000					

Fig. 39 Speed related derivatives

				Speed	Related Derivatives: Lift: Flight Co	ondition	 1		
					Input Parameters				
Altiude	30000 tt	ΔΤ	0.0 deg F	U1	350.00 kts	CL ₁	0.1076	Λ_{cl4}_{w}	0.0 deg
			Output Parameters			_			
M1	0.594	q 1	155.41 b	CL	0.0586				

Fig. 40 Speed related derivatives

	Speed Related Derivatives: Pitching Moment: Flight Condition 1												
							Input Parameters						
Attud	30000 #	CiowBM-0	6.3598 rad ¹	Λ_{04}_{w}	0.0 deg	(Vc) _{tw}	12.00 %	Xapoy	60.00 ft	г,	0.0 deg	(_{anon}	1.00
ΔT	0.0 deg F	t _{anow}	0.93	X _{aporte}	23.00 ft	Sh	190.00 # ²	Yatash	0.00 ft	η _h _{poff}	1.000	ws	2.00 ft
U1	350.00 kts	Sw	837.00 n ²	Yatat	0.00 ft	ARh	7.00	(Vc) _{rh}	12.0 %	η _h	1.000	D/ _{may}	6.83 ft
с _{ь,}	0.1076	AR _w	8.00	Z _{c/4} w	2.00 ft	λ ₆	1.00	(l/c) ₁	12.0 %	enter anticipation and anticipation anticipation and anticipation and anticipation and anticipation and anticipation and anticipation and anticipation anticipation and anticipation anticipaticipation anticipation anticipation anticipation anticipation an	6.2504 rad ⁻¹	Δx̄ _{w_i}	-0.0451
9 ₉₇₄ 8	6.3598 red ⁻¹	λ.,	0.60	(Vc),,	12.00 %	$\Lambda_{cil_{h}}$	0.0 deg	z _{v4}	6.00 n	e ^{oli} Bn-c	6.2504 rad ¹¹		
					Outpu	t Parameters							
М1	0.594	C. Manap	5.2621 rad ⁻¹	∂x _{ac} /∂M	-0.1666	۹ _{0m}	7.7681 rad ⁻¹	Cine.	5.7070 rad ⁻¹	x _{mpof}	0.6399		
9 ₉₇₆	7.9041 rad ⁻¹	C.,	5.3706 rad ⁻¹	× _w	26.20 [#]	9 ₉₂₀	7.7681 rad ⁻¹	C _{Lon}	0.7862 rad ⁻¹	q,	155.41 ^h		
9 ₀₅₀	7.9041 rad ⁻¹	C _{Low}	5.3724 rad ⁻¹	x _{eew}	0.2500	°.,	7.7681 rad ⁻¹	X _{sch}	61.30 [#]	ā.,	10.44 *		
9 ₉ ,	7.9041 rad ¹	× _{ngcw}	0.59 *	X _{acul pol}	0.2049	Ci _{neep}	5.3897 rad ⁻¹	×.	3.6121	с _{т,}	0.0106		
		High Lift D	levices Table										
Ħ	High Lift Device	i %	™ ₀ % ¢¢ _w %	å deg									
1	Single Slotted Flap	9.0	55.5 30.0	0.0									

Fig. 41 Speed related derivatives

Speed Related Derivatives: Pitching Moment due to Thrust: Flight Condition 1										
	Input Parameters									
Sw	837.00	tt ² AF	8.0	0	λ. _w	0.60	X _{cg}	24.32 t	Z _{cg}	2.95 ft
				Ou	tput Paramete	ers			_	
dītī pro	0.76]ft [⊕] T	Eprop 7.0	deg	d∑N	2.43 ft	ē"	10.44 ft		
dzn _{pro}	, 2.43 ft dtr 0.76 ft					7.0 deg	C _{mTu}	0.0038		
			Propeller T	able					_	
		× _{prop} ft	Z _{prop} ft	i _{prop} deg	^с т _{×u}	° _{m_{Tu}}				
#	Туре	Input	Input	Input	Input	Output				
	Propeller: On	22.00	4.00	7.0	0.0266	0.0019				
2	Propeller: On 22.00 4.00 7.0 -0.0					0.0019				

Fig. 43 Speed related derivatives

			Ang	le of At	ttack Related Derivatives: Drag:	Flight Condi	tion 1		
					Input Parameters				
Attude	30000 tt	M ₁	0.594	C. P. S.	0.0254	B _{DP}	0.0465	CL _{a.p.off}	6.1586 rad ⁻¹
ΔΤ	0.0 deg F	α	0.00 deg	ADP	0.0000	CL _{opolf}	0.1698		
	Output Parameter	-							
CDa	0.0972 rad ⁻¹								

Fig. 44 Angle of attack related derivatives

							Angle of Al	tack Related Derivatives:	Lift: Flight Con	fition 1				
		_						Input Parameters			_		_	
Attude	30000 #	fang _{ar}	0.93		·	-1.0 deg	Z _{s/4w}	2.00 ft	X _{apoy}	60.00 ft	r _h	0.0 deg	w <u>c</u>	2.00 ft
ΔΤ	0.0 deg F	Sw	837.00	n²	George	23.00 ft	Sh	190.00 # ²	Yatash	0.00 ft	ղ _{երոք}	1.000	D _{freete}	6.83 ft
U,	350.00 kts	AR _w	8.00		ofset _w	0.00 n	AR _n	7.00	(blc), _h	12.0 %	9.00 GM-0	6.2504 rad ⁻¹		
e ^{o,} guio	6.3598 rad ⁻¹	λ.,	0.60		Vc), _w	12.00 %	h.	1.00	(b(c)) ^k	12.0 %	9. ₉₈₈₊₀	6.2504 rad ⁻¹		
9. _{2.60-0}	6.3598 rad ¹	Λ_{eq}	0.0	deg	^{Vc)} i _w	12.00 %	Λ_{oth}	0.0 deg	z _{ç4,}	6.00 ⁿ	f _{awh}	1.00		
								Output Parameters	_					
M1	0.594	c, _{e, e}	7.9041	rad ⁻¹	S.	5.3724 rad ⁻¹	9 ₉	7.7681 rad ⁻¹	ds₁/d¤	0.3931	CL _{entro empen}	5.3724 rad ⁻¹	Cr.,	6.1586 rad ⁻¹
q,	155.41 ^b	CL _{Wo.clean}	5.3706	rad ⁻¹	ن ب	1.0003	Z _{sch}	6.00 [#]	C.,	5.7070 rad ⁻¹	CL _W clean polf	6.1586 rad ⁻¹		
9 _{97w}	7.9041 rad ¹¹	CL _{Pol} cion	5.3724	rad ⁻¹	N	7.7681 rad ⁻¹	d§ _e /d¤ _{clean}	0.3931	C.,	0.7862 rad ⁻¹	Ci _{spaf}	6.1586 rad ⁻¹		
9 ₉₃₈	7.9041 rad ⁻¹	C.,	5.3706	rad ⁻¹	<u>к</u> – Г	7.7681 rad ⁻¹	(diş,/dix) _{p.of}	0.3931	CL _{an} ro empidean	5.3724 rad ⁻¹	C _{Lencleon}	6.1586 rad ⁻¹		
		High Lift D	evices Table											
# Н	gh Lift Device	i %	n _o %	¢/c _w %	å deg									
1 S	ngle Slotted Flap	.0	55.5	30.0	0.0									

Fig. 45	Angle of attack related derivatives

						٨	ngle of Attack	Related Derivatives: Pitchi	ng Moment: Fl	ight Condition 1				
		_						Input Parameters						
Attude	30000 #	fano _w	0.93	^	(ana [23.00 ft	Sh	190.00 ft ²	Yatat	0.00 ft	η _{hp.off}	1.000	D _{fmere}	6.83 n
ΔΤ	0.0 deg F	Sw	837.00	n²	(otset _w	0.00 ft	ARh	7.00	(t/c), _{'n}	12.0 %	9. BWIG	6.2504 rad ⁻¹	$\Delta \tilde{x}_{w_{f}}$	-0.0451
U1	350.00 kts	AR _e	8.00	0	Vc), _w	12.00 %	λn	1.00	(t/c) ₁	12.0 %	о _{ер Өм-0}	6.2504 rad ⁻¹	X _{eg}	24.32 1
9 _{9,4} 80-о														
9.00 gw-0														
	Output Parameters													
М1	0.594	Ciere	7.9041	rad ⁻¹	× [5.3706 rad ⁻¹	X _{acul pat}	0.2049	x _{wh}	3.6121	ds/da	0.3931	SM	56.96 %
ā,	155.41 ^b	с. ₆₁₆	7.9041	rad ⁻¹	~ [5.3724 rad ⁻¹	С _{ів_{rін}}	7.7681 rad ⁻¹	Ci _{Ng}	5.7070 rad ⁻¹	\overline{V}_h	0.8040	C _{Lapol}	6.1586 rad ⁻¹
x _{op}	0.0702	0 _{0.0}	7.9041	rad ⁻¹	(_e , [26.20 ft	G _{ay,}	7.7681 rad ⁻¹	C.	0.7862 rad ⁻¹	X _{sc}	30.27	с _і	6.1586 rad ⁻¹
ē.,	10.44 *	CL. ^W o. clean	5.3706	rad ⁻¹		0.2500	9 ₉₅	7.7681 red ⁻¹	z _{ech}	6.00 ft	x _{eepot}	0.6399	C _{reapol}	-3.5082 rad ⁻¹
× _{mpiw}	0.59 *	Ci _{lewicteen}	5.3724	rad ⁻¹	Ger _{wipot}	25.73 ⁿ	x _{wh}	61.30 [#]	(ds/dx) _{p.of}	0.3931	x _œ	0.6399	с, _{"6}	-3.5082 rad ⁻¹
		High Lift	Devices Table											
# High L	ift Device	" <mark>i</mark> %	η ₀ %	с/с _. %	ै deg									
1 Single	Slotted Flap	9.0	55.5	30.0	0.0									
i jangie	Slotted Flap	5.0	55.5	30.0	0.0									

Fig. 46 Angle of attack related derivatives

								Angle of a	Attack Related	Derivatives: Pitch	ning Mor	nent due t	o Thrust: Flight	Condition 1						
									In	put Parameters										
At	lude	30000]#	U,	350.00 kts	CL,	0.1076	z	ag [2.95 ft		Sw	837.00	ft ²	X _{apeq}	23.00	t.	с _{і.,}	6.1586 rad ⁻¹	
ΔΤ		0.0	deg F	Wourrent	37689.0 b	X _{op}	24.32	ft X	×. [26.20 ^{ft}		AR _w	8.00		Z _{s,Aw}	2.00				
				-			Output Param	neters .							_					
č"		10.44	n	q ₁	155.41	ΣP_{mail}	2492	hp (d	IC"/dC _L) _{TL}	-0.0041		Δ(dC _n /dC _L) _T	-0.0041							
м,		0.594]	ESHP _{eet}	3109 hp	(dC _{st} /dC _L) _N	0.0000	(0	IC.,/dC _L) _N	0.0000		C _{my_o}	-0.0251	rad ¹¹						
							Pr	opeller Table							-					
			× _{prop} ft	Z _{prop} ft	D _{prop} ft	i _{prop} deg	^v prop deg	^C N _n rad ⁻¹ prop	fInflow	d⁼u/d∝	SHP _{SI}	et ^{hp}	"prop	K _{loss} %	P _{avail} hp					
	Туре		Input	Input	Input	Input 7 o	Input	Input o oooo	Input 1.0.400	Input 0.0000	Input		Input o oro	Input c. z	Output	_				
2	Propelle	r: On r: On	22.00	4.00	9.25	7.0	0.0	0.0000	1.0402	0.0000	0		0.850	5.7	0	-				
С	U Boulder	Advanced	Aircraft Anal	lysis 4.0 Project	12/12/18	10:11 am														

Fig. 47 Angle of attack related derivatives

Fig. 48 Angle of attack rate related derivatives

						Rate of Angle	of Attack Related Derivativ	es: Lift: Flight	Condition 1					
		-					Input Parameters	-		-		_		
Attude	30000 #	f _{ann}	0.93	X _{apera}	23.00 ft	Sh	190.00 ft ²	Yatash	0.00 ft	n.	1.000	X _{ep}	24.32 ft	
ΔΤ	0.0 deg F	Sw	837.00 t ²	Yototy	0.00 ft	AR _h	7.00	(Vc) _{rh}	12.0 %	с _{іе, 8м-0}	6.2504 rad ⁻¹			
U1	350.00 kts	AR _a	8.00	(Vc), _w	12.00 %	λn	1.00	(l/c)	12.0 %	9 _{99, 8м-0}	6.2504 rad ⁻¹			
9."Bn-1	gene 6.3598 md ⁻¹ h ₄ 0.60 0 ⁽⁵⁾ , 12.00 5 ⁽⁵⁾ h ₄ 0.0 5 ⁽⁶⁾ f ₄ 0.0 5 ⁽⁶⁾ f ₄ 1.00													
e ^{ora} gard	6.3598 red ⁻¹	Λ_{cl_W}	0.0 deg	Z _{e,4}	2.00 1	Xanar	60.00 ft	Γh	0.0 deg	wç	2.00 *			
	Output Parameters													
М1	0.594 ² ₄ 10.44 ^a ^C _{1, (204), (204)} <u>4.5851</u> ref. ¹ ^C _{1, (204)} ² ₄ <u>7.7681</u> ref. ² ₄ <u>3.6121</u> ref. <u>1.3931</u>													
X _{sc}	26.20 ft	9. _{9.16}	7.9041 rad ⁻¹	Ci _{wa clean}	5.3706 rad ⁻¹	o _{on}	7.7681 rad ⁻¹	Z _{sch}	6.00 ft	\overline{v}_h	0.8040			
×.	0.2500	G _{NW}	7.9041 rad ⁻¹	C	4.5851 rad ⁻¹	9 ₉₅	7.7681 rad ⁻¹	c.~~	5.7070 rad ⁻¹	c _{ión}	3.6077 rad ⁻¹			
x.,	0.0702	G _{ow}	7.9041 rad ⁻¹	C.,	5.3706 rad ⁻¹	X _{ach}	61.30 ft	(ds,/do:)p.of	0.3931	c _{iá}	3.6077 rad ⁻¹			
		High Lift D	evices Table											
# Н	igh Lift Device ^ŋ i	%	"0 % c/c _w %	å deg										
1 S	ngle Slotted Flap 9.	D	55.5 30.0	0.0										

					Rate	of Angle of A	ttack Related Derivatives: F	itching Mome	nt: Flight Condition 1				
							Input Parameters						
Attude	30000 #	fano _w	0.93	X _{apara}	23.00 ft	Sh	190.00 ft ²	Yatash	0.00 ft	η.	1.000	X ₁₀	24.32 ft
ΔΤ	0.0 deg F	Sw	837.00 m ²	Yofset _w	0.00 ft	ARh	7.00	(Vc) _n	12.0 %	9. _{9,16} @M=0	6.2504 rad ⁻¹		
U1	350.00 kts	AR _w	8.00	(VC),	12.00 %	λ _{in}	1.00	(Vc)	12.0 %	9 _{99,8110}	6.2504 rad ⁻¹		
e ^{willin} o	6.3598 rad ¹¹	λ.,	0.60	(Vc)	12.00 %	$\Lambda_{e^{i\theta}h}$	0.0 deg	z _{s/4}	6.00 n	f _{peph}	1.00		
9 ₉₇₉ 84-0	6.3598 rad ¹¹	$\Lambda_{cR_{w}}$	0.0 deg	Z _{e,^{j4}w}	2.00 n	X _{apon}	60.00 ft	Γh	0.0 deg	wç	2.00		
					Outpu	t Parameters						-	
М1	0.594	ē"	10.44 tt	CL _{Wo.@M=0clean}	4.5851 rad ⁻¹	9 _{9m}	7.7681 red ⁻¹	x.	3.6121	ds/da	0.3931		
X	26.20 [#]	°~~	7.9041 rad ⁻¹	Ci _{we clean}	5.3706 rad ⁻¹	o _{on}	7.7681 rad ⁻¹	Z _{sch}	6.00 ft	⊽ _h	0.8040		
x _w	0.2500	°~~	7.9041 rad ⁻¹	C.,	4.5851 rad ⁻¹	°~	7.7681 rad ⁻¹	C	5.7070 rad ⁻¹	c _{ren}	-12.7779 rad ⁻¹		
x.,,	0.0702	9 ₉₉	7.9041 rad ⁻¹	C.,	5.3706 rad ⁻¹	X _{ach}	61.30 [#]	(ds/do) _{p.of}	0.3931	c	-12.7779 rad ⁻¹		
		High Lift De	vices Table										
# Hig	h Lift Device ⁿ i	%	"0 % c/c _w %	∛ deg									
1 Sini	gle Slotted Flap 9.	0	55.5 30.0	0.0									

Fig. 50 Angle of attack rate related derivatives

Fig. 51 Pitch rate related derivatives

	Pitch Rate Related Derivatives: Lit: Flight Condition 1														
						_	Input Parameters								
Attude	e 30000 #	Ci _{nta} gm+0	6.3598 rad ¹	$\Lambda_{c/4}_{w}$	0.0 deg	Sh	190.00 ft ²	Yatash	0.00 ft	η.	1.000	X _{apeny}	0.00 ft		
ΔT	0.0 deg	F (200 ₁₀	0.93	$\times_{aper_{ac}}$	23.00 ft	ARh	7.00	(VC) _{rh}	12.0 %	Cine BM-0	6.2504 rad ¹	ł.	55.00 ft		
U1	350.00 kts	Sw	837.00 t ²	Yofoetw	0.00 ft	λn	1.00	(Vc) ₅	12.0 %	Ciant BM+0	6.2504 rad ⁻¹	Dimen	6.83 ft		
X _{og}	24.32 ft	AR _w	8.00	(Vc),	12.00 %	Λ_{64}_{h}	0.0 deg	z _{s/4h}	6.00 ft	f _{eren}	1.00	w.	6.83 ft		
9 _{4,4} 80	ugers 6.3599 gg ¹ k _e 0.60 (%) _e 12.00 % k _e 60.00 ft 17, 0.0 % 2.00 ft 5, 20.49 ft														
	Output Parameters														
м,	0.594	9 _{6,0010}	6.3598 rad	C. Nome	5.2621 rad ⁻¹	x.,	0.2500	×.	3.6121	C.	9.1769 rad ⁻¹				
x.,	0.0702	٩.,	7.9041 rad ⁻¹	k ₂ - k ₁	0.913	۹.,,	7.7681 rad ⁻¹	Cine.	5.7070 rad ⁻¹	C. _{N.}	4.6958 rad ⁻¹				
č,	10.44 *	S _{weep}	751.13 n²	C _{inr}	0.0447 rad ⁻¹	9 ₉₅	7.7681 rad ⁻¹	\overline{V}_h	0.8040	C.q	0.2628 rad ⁻¹				
۹.,,	7.9041 rad	, Gwog	10.20 *	$K_{w(b)} + K_{b(w)}$	1.18	9 ₉₇	7.7681 rad ⁻¹	īd,	5.21 [#]	C. _{N.}	4.9586 rad ⁻¹				
٩.,,	7.9041 rad	1 CL _{M0.00M-0}	4.5851 rad	X _{iew}	26.20 [#]	X _{ach}	61.30 #	Cim _e	81.0235 rad ⁻¹	C _{Lq}	14.1354 rad ⁻¹				
		High Lift	Devices Table												
#	High Lift Device	"i %	"° « c/c	,% ⁸ deg											
1	Single Slotted Flap	9.0	55.5 30.0	0.0											

Fig. 52	Pitch	rate	related	derivatives
115.02	I Ittell	Iuu	1 ciuteu	ucilianico

Pitch Rate Related Derivatives: Pitching Moment: Flight Condition 1															
	liqut Parameters														
Vitude	30000 #	f _{anp_{so}}	0.91	Xuper	23.00 ft	Sh	190.00 ft ²	(Vc) _{rn}	12.0 %	cient BM+0	6.2504 rad ¹¹	× _{er}	n.		
ΔΤ	0.0 deg F	fam _w	0.93	Yofot	0.00 ft	ARh	7.00	(Nc)	12.0 %	fam _h	1.00	s _{by}	n ²		
U1	350.00 Ms	Sw	837.00 n ²	(Vc);w	12.00 %	λ _h	1.00	z _{5/46}	6.00 ft	wç	2.00	Vr	n ²		
X _{og}	24.32	AR _a	8.00	(Vc)	12.00 %	Λ _{ση}	0.0 deg	гь	0.0 deg	Xany	0.00 *				
A _{ara} gu-o	6.3598 red ⁻¹	λ	0.60	w("	6.83 n	X ^{anar}	60.00 t	η _b	1.000	e.	55.00 *]			
9 ₉₇₆₀₋₀	6.3598 rad ⁻¹	Λ_{cl4}	0.0 deg	C	5.3724 rad ⁻¹	Yates	0.00 π	9 _{9,0} ,00+0	6.2504 rad ¹	Δx̄ _{scγ}	-0.0451				
							Output Parameters								
м,	0.594	°.,	7.9041 rad ⁻¹	c	10.20 [#]	x _{ew}	0.2500	X _{ach}	61.30 [#]	ō,	5.21 *	C _{may}	rad ⁻¹		
x _{op}	0.0702	ciew BM+0	6.3598 rad ⁻¹	C ^{mey}	0.2422 rad ⁻¹	9. _{9m}	7.7681 rad ¹	x.	3.6121	c	-143.1850 rad ⁻¹	C _{mqw}	rad ⁻¹		
ē,	10.44 *	ci _{ew}	7.9041 rad ⁻¹	$K_{u(b)} \star K_{b(u)}$	1.18	с _{ер}	7.7681 rad ⁻¹	Ci _{ne}	5.7070 rad ¹	C _{mqh}	-32.5032 rad ¹	C _{mq}	-32.5032 rad ⁻¹		
	2 0041	S	751 13	X	26.20	9	7 7681 mt ⁻¹	⊽,	0.8040	c	-1.3600 rat ⁻¹				

Fig. 53 Pitch rate related derivatives

												Fuse	elage Geon	etry: Flight	Conditio	n 1		
													Input Parar	neters				
x ^{stert}	0.00	t t		Z _{apeny}	2.00	ħ	×		23.00	ft	Xapoy		60.00	ft	Xapony		60.00 ft	(X,Z)queq. [8
Yapany	0.00	ft	i	ł.	0.00	deg	c,	,	12.79	ft	c _{rh}		5.21	ft	C _{rv}		7.51 ft	(X,Y,Z) _{ba}
											Output Par	ameters						
h _{/ max}															Za, 5.00 n			
w _{fmax}	6.78	î î	:	s _{øfr}		n²	s,		20.49	n²	h _{/0.75}		5.00	n	z _{kin}		5.00 ⁿ	^h y. 2.00 ft
s _{iy}		n		S _{wfy}		n²	v			ft ³	Z _{kiw}		2.50	ft	h's		π	Coordinates Undefined
						Fusela	ge Table: o	louble click	for Cross-	Section Dia	alog							
Fuselage	× _{fus ft}	^y fus ₁ ft	^z fus ₁ ft	y _{fus2} ft	^z fus ₂ ft	y _{fus3} ft	^z fus ₃ ft	y _{fus 12} ft	^z fus ₁₂ ft	^P fus ₁₂	y _{fus23} ft	z _{fus} 23 ft	Pfus23	A _{fusi} tt ²	s _{fus} ft			
Section	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Output	Output	-		
1	0.0000													0.00		-		
2	4.5000													19.60				
3	15.0000													36.30				
4	47.0000													36.30				
5	55.0000													9.18		_		
6	60.0000				<u> </u>			<u> </u>				<u> </u>	<u> </u>	3.14		-		
/	66.0000			<u> </u>				l				l	l	3.14		-		
0	66.1000			1		1				1		1	1	0.00				

Fig. 54	Fuselage	geometry
		Beometry

	Sidestip Related Derivatives: Sideforce: Flight Condition 1														
	Input Parameters														
Attude	30000 #	$\Lambda_{\omega 4_{W}}$	0.0 deg	Γa	5.0 deg	s,	137.00 ft ²	G _{abr} gM=0	6.2800 rad ⁻¹	Xapany	60.00 ft	hç	2.00 ft		
ΔΤ	0.0 deg F	Z _{fra}	2.50 *	Sh	190.00 ft ²	AR,	3.00	f _{ano,}	1.00	Zapol	15.00 *	s.	20.49 ft ²		
U1	350.00 kts	Z _{e,ⁱ⁴w}	2.00	X _{an}	61.30 n	λ.,	0.80	(t/c),	12.0 %	Dimov	6.83 *				
S _w	837.00 ft ²	w.,	6.83 n	Z _{alp}	6.00 π	$\Lambda_{cH_{V}}$	5.0 deg	(t/c)	12.0 %	ł	55.00 *				
AR.	8.00	Γw	5.0 deg	Z _{ky}	5.00 π	9 _{9,0} 80+0	6.2800 rad ⁻¹	η,	1.000	h,	2.50 *]			
					Output Parameters										
z _w	0.80 ft	9. ₉₁₁	7.8049 rad ⁻¹	c. ^x p	-4.5029 rad ⁻¹	k ₂ - k ₁	0.913	с _{лу,}	-0.0590 rad ⁻¹						
М,	0.594	Gran .	7.8049 rad ¹¹	x/c,	0.2760	C _{1.91}	0.0447 rad ⁻¹	c.,,,,	-0.8302 rad ⁻¹						
AR _{vor}	4.32	Q _{ay}	7.8049 rad ⁻¹	(do/dβ),	-0.1264	с _{ър.} "	-0.0287 rad ⁻¹	C ^{7/2}	-0.9179 rad ⁻¹]					

Fig. 55	Sideslip	related	derivatives
---------	----------	---------	-------------

	Sideslip Related Derivatives: Rolling Moment: Flight Condition 1													
							Input Parameters							
Attude	30000 #	λ	0.60	с _{ещем-0}	6.3598 rad ⁻¹	Λ_{oq}	0.0 deg	Xapon _h	60.00 ft	G*****	6.2800 rad ⁻¹	D(6.83 ft	
ΔΤ	0.0 deg F	Λ _{υ4}	0.0 deg	G _{amen} o	6.3598 rad ⁻¹	гь	0.0 deg	D ₁	2.00	e ^{ntenio}	6.2800 rad ⁻¹	Xog	24.32 ft	
U1	350.00 kts	r _w	5.0 deg	X _{apay}	0.00 n	5 ₉₅	0.0 deg	s,	137.00 ft ²	f _{awy}	1.00	Z _{op}	2.95 n	
a	0.00 deg	Γ _w	5.0 deg	Z _{kiw}	2.50 n	z _{ç4,}	6.00 tt	AR,	3.00	(t/c) _{rv}	12.0 %			
Cl _{wf cln polf}	0.1875	8 _{9.w}	0.0 deg	с.,	-0.0798	z _{sin}	5.00 [#]	λ.,	0.80	(t/c) _{ly}	12.0 %			
$\Delta C_{L_{\mathrm{Nel}}}$	0.0000	Z _{i,Rw}	2.00 *	Sh	190.00 n ²	X _{sen}	61.30 [#]	$\Lambda_{oll_{V}}$	5.0 deg	η,	1.000			
s"	837.00 # ²	X _{apaxe}	23.00 *	AR	7.00	Z _{sch}	6.00 [#]	X _{apasy}	60.00 ft	hr _a	2.50 [#]			
AR _w	8.00	n _{entr}	0.0 %	24	1.00	Z _{fc}	5.00 #	Zapos	15.00 [#]	r,	2.00 *			
							Output Parameters							
М1	0.594	9 ₉₄	7.9041 rad ⁻¹	AR _{yef}	4.32	۹	7.8049 red ⁻¹	c _{vp}	-4.5029 rad ⁻¹	c _{ipu}	-0.0808 rad ⁻¹	с _р	-0.3025 rad ⁻¹	
9 ₉₇₄	7.9041 rad ¹	X _{Ny}	62.73 ^{**}	x/c,	0.2760	٩.	7.8049 rad ⁻¹	с _{ир,}	-0.8302 rad ⁻¹	С _{ір,}	-0.0004 rad ⁻¹			
°~	7.9041 red ⁻¹	z _{s,}	24.76	(do/dß),	-0.1264	٩.,	7.8049 rad ⁻¹	C _{IPw}	-0.0790 rad ⁻¹	c _{iș,}	-0.2213 rad ⁻¹			

Sideslip Related Derivatives: Yawing Moment: Flight Condition 1														
							Input Parameters							
Attude	30000 #	λ.,	0.60	Z _m	6.00 ft	X _{apany}	60.00 ft	(Vc) _{ty}	12.0 %	Z _{og}	2.95 ft	Xapany	0.00 ft	
ΔΤ	0.0 deg F	Λ_{64}	0.0 deg	Z _{fc}	5.00 ft	Zapay	15.00 ft	η,	1.000	s _e	383.07 ft ²			
U1	350.00 kts	Z _{c,^Hw}	2.00	s,	137.00 n ²	9 ₉₇₀ 80-0	6.2800 rad ⁻¹	ł	55.00 ft	h _{0.25}	6.78			
a	0.00 deg	Z _{fra}	2.50 1	AR,	3.00	9 _{92, GM=0}	6.2800 rad ⁻¹	h _u	2.50 ft	h _{10.75}	5.00			
S _w	837.00 ft ²	Sh	190.00 n ²	λ.,	0.80	fore,	1.00	hç.	2.00 1	h _i	2.00			
AR _w	8.00	X _{Nh}	61.30 ft	$\Lambda_{cH_{V}}$	5.0 deg	(blc),	12.0 %	X _{op}	24.32 1	w _{rmax}	6.78			
		_		_	Outpu	t Parameters						_		
М,	0.594	Z _{scy}	24.76	۹.,	7.8049 rad ⁻¹	x/c _v	0.2760	K _{N_{ke}}	-0.00029	с _{тр.}	0.3897 rad ⁻¹			
Rer	93.1248 × 10 ⁶	AR _{ia}	4.32	9 ₉₀	7.8049 rad ⁻¹	(do/dβ),	-0.1264	KR1	1.92878	c.,,	0.3995 rad ⁻¹			
X _{sev}	62.73 [#]	с, _{ем}	7.8049 rad ⁻¹	c.,»	-4.5029 rad ⁻¹	с _{%,}	-0.8302 rad ⁻¹	C _{rigy}	0.0098 rad ⁻¹					
1														

Fig. 57 Sideslip related derivatives

Fig. 58 Sideslip related derivatives

			Sideslip Re	lated Derivative	es: Yawing Mome	ent due to Thrust	: Flight Condit	ion 1	
					Input Parameter	rs			
X _{cg}	24.32	tt	(cg -0).11 ft	Sw	837.00	ft ²	AR _w 8.	00
	Output Param	eter							
C _{ητβ}	0.0000	rad ⁻¹							
				Propelle	r Table				
Ħ	Туре	× _{prop} ft	Y _{prop} ft	i _{prop} deg	Ψ_{prop} deg	D _{prop} ft	f _{Inflow}	^C N _∞ rad ⁻¹ prop	
1	Propeller: On	22.00	9.01	7.0	0.0	9.25	1.0402	0.0000	
2	Propeller: On	22.00	-9.01	7.0	0.0	9.25	1.0402	0.0000	

Fig. 59 Sideslip related derivatives

	Subsonic Horizontal Tail Drag Coefficient Prediction: Filight Condition 1													
	Input Parameters													
Altiude	30000 tt	S _w	837.00 n ²	Λ_{cl4}_{h}	0.0 deg	ō,	5.21 tt	U ₆	1.2	б _{9 н}	0.0 deg			
ΔT	0.0 deg F	Sh	190.00 ft ²	Λ _{ιβ_h}	0.0 deg	(R _{LE} /c) _h	1.000 %	(x _{lan} /c) _h	15.0 %	CDgape	0.00020			
U1	350.00 kts	ARh	7.00	(t/c) _h	12.00 %	S _{wih}	369.94 t ²	۹.	7.7681 rad ⁻¹					
Ci,	-0.0798	λ _n	1.00	k _{sand}	0.01333 10 ⁻³ tt	Ch _{eep}	5.21 #	C.h.	5.7070 rad ⁻¹					
					Output Parameters									
М,	0.594	c _h	0.0028	e _h	0.9956	€ _₽	0.0017	с _{оци}	0.0001					

Fig 60	Unvigontal	ctabilizar	drag	anofficient
r 1g. 00	11011201111	stabilizer	ui ag	coenicient

						Rate of Sid	eslip Related Derivatives: Si	deforce: Fligt	t Condition 1				
							Input Parameters	-		_		_	
Alfude	30000 #	AR _a	8.00	Z _{c/^Aw}	2.00 ft	X _{sch}	61.30 ft	λ.,	0.80	on	6.2800 rad ⁻¹	h _f	2.00 ft
ΔΤ	0.0 deg F	λ	0.60	Z _{few}	2.50 ft	Z _{sch}	6.00 ft	$\Lambda_{ef_{V}}$	5.0 deg	faw,	1.00		
U1	350.00 kts	Λ_{04}_{w}	0.0 deg	X _{mw}	26.20 ft	Złcy	5.00 ft	X _{apory}	60.00 ft	(t/c) _{rv}	12.0 %		
a	0.00 deg	r,	5.0 deg	Z _{mw}	3.64 n	S _v	137.00 ft ²	Z _{apov}	15.00 ft	(t/c) _l	12.0 %		
S _w	837.00 n ²	٤ _{9.w}	0.0 deg	Sh	190.00 ft ²	AR,	3.00	e ^{etr} Bn-o	6.2800 red ⁻¹	D _{Tmony}	6.83 ft]	
							Output Parameters	_		_			
М1	0.594	Z _{acy}	24.76 *	۹.,	7.8049 rad ⁻¹	٩.,	7.8049 rad ⁻¹	σp _a	-0.0012 deg ⁻¹	99 ₅₂	-0.0012 deg ⁻¹	(doldß) _w	-0.0100
X _{acv}	62.73 [#]	AR _{va}	4.32	9 ₉₀	7.8049 rad ⁻¹	C. ¹	-4.5029 rad ⁻¹	opr.,	-0.2389 deg ⁻¹	op _{ut}	0.0109	c _{is}	-0.0066 rad ¹¹

Fig. 61	Sideslip	rate	related	derivatives
---------	----------	------	---------	-------------

					1	Rate of Sides	lip Related Derivatives: Roll	ing Moment: I	Flight Condition 1				
							Input Parameters						
Attude	30000 #	AR _w	8.00	Z _{c/Aw}	2.00 ft	X _{ach}	61.30 [#]	λ.,	0.80	С _{юр ВМ-0}	6.2800 rad ⁻¹	hr, 2.00 ft	
ΔΤ	0.0 deg F	λ <u></u>	0.60	Z _{tew}	2.50 ft	Z _{sch}	6.00 ft	$\Lambda_{oR_{V}}$	5.0 deg	f _{prev}	1.00		
U1	350.00 kts	$\Lambda_{cl_{W}}$	0.0 deg	X _{ecu}	26.20 ft	Z _{tev}	5.00 [#]	X _{apany}	60.00 ft	(Vc) _{rv}	12.0 %		
α	0.00 deg	r,	5.0 deg	Z _{acw}	3.64 ft	S _v	137.00 # ²	Z _{aposy}	15.00 ft	(Vc) _{1,}	12.0 %		
S _w	837.00 # ²	5 _{2 w}	0.0 deg	Sn	190.00 ft ²	AR,	3.00	о _{ет} ви-о	6.2800 rad ⁻¹	Dimen	6.83 [#]		
					Output Parameters								
м,	0.594	AR _{rat}	4.32	٩.,	7.8049 rad ⁻¹	op _{rw}	-0.2389 deg ⁻¹	(da/dβ) _{ef}	-0.0100				
X _{eev}	62.73 ^{ft}	9. ₉₁₁	7.8049 rad ⁻¹	c,,,	-4.5029 rad ⁻¹	σρ _{είω}	+0.0012 deg ⁻¹	с ₁₉	-0.0066 rad ⁻¹				
Z _{ec}	24.76	Or and the second se	7.8049 rad ⁻¹	σβ _α	-0.0012 deg ⁻¹	oj _w	0.0109	с ₁	+0.0017 rad ⁻¹]			

Fig. 62 Sideslip rate related derivatives

					F	late of Sidesli	p Related Derivatives: Yaw	ing Moment: F	light Condition 1					
				_		_	Input Parameters			_				_
Attude	30000 #	AR _a	8.00	Z _{c/4w}	2.00 ft	X _{ach}	61.30 ft	λ.,	0.80	G***0	6.2800 rad ¹¹	h _{fy}	2.00 ft	
ΔΤ	0.0 deg F	λ	0.60	Z _{few}	2.50 ft	Z _{ach}	6.00 ft	$\Lambda_{H_{V}}$	5.0 deg	f _{arev}	1.00			
U1	350.00 kts	$\Lambda_{\mathrm{ot}}_{\mathrm{w}}$	0.0 deg	X _{×v}	26.20 ft	Z _{ky}	5.00 ft	Xapory	60.00 ft	(t/c) _{rv}	12.0 %			
α	0.00 deg	Γ.	5.0 deg	Z _{ww}	3.64 n	s,	137.00 ft ²	Z _{apovy}	15.00 ft	(t/c)	12.0 %			
S _w	837.00 n ²	ε ₈	0.0 deg	Sh	190.00 t ²	AR,	3.00	9 _{9,0} 8010	6.2800 red ⁻¹	Dimen	6.83 *			
					Output Parameters			_		_				
М,	0.594	AR _{ver}	4.32	9 ₉₀	7.8049 rad ⁻¹	op _{rw}	-0.2389 deg ⁻¹	(dơ/dβ) _{af}	-0.0100					
X _{ec}	62.73 [#]	9 ₉₁₁	7.8049 rad ⁻¹	C. ²	-4.5029 rad ⁻¹	°.	-0.0012 deg ⁻¹	c, ₉	-0.0066 rad ⁻¹					
Z _{sc,}	24.76 #	0 ₀₀	7.8049 rad ⁻¹	σ _{Pn}	-0.0012 deg ⁻¹	o₂,,	0.0109	c _{rg}	-0.0029 rad ⁻¹]				
										-				

Fig. 63 Sideslip rate related derivatives

Fig. 64 Sideslip related derivative	ves
-------------------------------------	-----

		Si	deslip Related [)erivatives: Yawi	ng Moment due t	to Thrust: Flight	Condition 1							
	Input Parameters													
X _{cg}	24.32	ttY		0.11 ft	Sw	837.00	ft ²	AR _w 8.0)0					
	Output Paran	neter												
C _{η_{τβ}}	0.0000	rad ⁻¹												
				Propeller	Table									
#	Туре	× _{prop} ft	Y _{prop} ft	i _{prop} deg	Ψ_{prop} deg	D _{prop} ft	^f Inflow	C _{N∝} rad ⁻¹ prop						
1	Propeller: On	22.00	9.01	7.0	0.0	9.25	1.0402	0.0000						
2	Propeller: On	22.00	-9.01	7.0	0.0	9.25	1.0402	0.0000						

	Roll Pate Related Derivatives: Sideforce: Flight Condition 1													
							Input Parameters							
Attude	30000 #	α	0.00 deg	Z _{icw}	2.50 ft	f _{gap_{wo}}	0.91	s,	137.00 ft ²	Z _{apany}	15.00 *	(Vc) _{ly}	12.0 %	
ΔΤ	0.0 deg F	s,	837.00 n ²	λ	0.60	Sh	190.00 # ²	AR,	3.00	о _{ру} ам-о	6.2800 rad ⁻¹	η,	1.000	
U1	350.00 kts	AR _w	8.00	г.,	5.0 deg	X _{ach}	61.30 ft	λ.,	0.80	G ⁰² BM-0	6.2800 rad ¹¹	hr _w	2.50 ft	
X _{og}	24.32 ft	۸ _{e4w}	0.0 deg	o _{'n ®M=0}	6.3598 rad ⁻¹	Z _{sch}	6.00 ft	$\Lambda_{cR_{v}}$	5.0 deg	fano,	1.00	h _{t,}	2.00 ft	
Z _{og}	2.95 ft	Z _{s, Aw}	2.00 ft	G _{ament} o	6.3598 rad ⁻¹	Z _{ic,}	5.00 ft	X _{apasy}	60.00 ft	(l/c) _{rv}	12.0 %			
					Output Parameters									
м,	0.594	9 ₉₄	7.9041 rad ⁻¹	AR _{var}	4.32	9 ₉₀	7.8049 rad ⁻¹	(da/dβ) _v	-0.1264					
9. ₉₇₈	7.9041 rad ¹	X _{ec}	62.73 ft	9. ₉₁₇	7.8049 rad ⁻¹	C _{Yp}	-4.5029 rad 1	c.,,,,	-0.8302 rad ⁻¹					
G _{ebw}	7.9041 rad ⁻¹	Z _{my}	24.76	9. ₅₀	7.8049 rad ⁻¹	x/c,	0.2760	C _{7p}	+0.1342 rad ⁻¹					

						Roll Rate Re	lated Derivatives: Rolling I	doment: Flight	Condition 1				
							Input Parameters						
Attude	30000 #	AR _a	8.00	G _{ament} ento	6.3598 rad ⁻¹	λ ₆	1.00	lang,	1.00	Λ_{tit}	5.0 deg	h _{fu}	2.50 ft
ΔΤ	0.0 deg F	λ	0.60	f _{ateno}	0.91	$\Lambda_{cd_{h}}$	0.0 deg	fam _{ho}	1.00	Xapery	60.00 ft	h _{lo}	2.00 1t
U1	350.00 kts	Λ_{ot}	0.0 deg	forew.	0.93	r _h	0.0 deg	C.,	5.7070 red ⁻¹	Zapery	15.00 *	Xog	24.32 1
α	0.00 deg	Γw	5.0 deg	Ci _{wa}	5.3706 rad ⁻¹	z _{çA_b}	6.00 ft	×	61.30 n	9 _{97,} 811-0	6.2800 rad ⁻¹	Z _{cg}	2.95 n
a. _{Wo} dean	- 3.0 deg	Z _{i,^Hw}	2.00	Č.,*	0.0037	w _h	2.00 1	Z _{wh}	6.00 π	9.00m	6.2800 rad ⁻¹		
4	-1.0 deg	(t/c) _{/w}	12.00 %	Co _{ntend}	0.0000	(bic) _{in}	12.0 %	Co.	0.0017	f _{ere} ,	1.00		
CL _{wis clean}	5.3706 rad ⁻¹	(t/c) ₁	12.00 %	с _{і,,}	-0.0798	(b/c)/	12.0 %	S _v	137.00 ft ²	(t/c) _{rv}	12.0 %		
ΔC _{ined}	0.0000	Z _{kw}	2.50 t	Sh	190.00 n ²	9.000 (M-0	6.2504 red ⁻¹	AR,	3.00	(t/c) _{ly}	12.0 %		
s"	837.00 ft ²	о _{ри} ди-о	6.3598 rad ⁻¹	AR _h	7.00	о _{ор ВМ-0}	6.2504 rad ⁻¹	h.,	0.80	η.,	1.000		
							Output Parameters						
м,	0.594	e ^{e®8n=0}	6.3598 rad ⁻¹	9 _{7,84-0}	6.2504 rad ⁻¹	AR _{Yof}	4.32	۹.,	7.8049 rad ⁻¹	C _{IPv}	-0.8302 rad ⁻¹	c _{ip}	-0.5259 rad ⁻¹
Cl _{wdnpaf}	0.1875	9 _{9,8}	7.9041 rad ⁻¹	9. ₉₇	7.7681 rad ⁻¹	۹.,,	7.8049 red ⁻¹	c _{x,p}	-4.5029 red ⁻¹	Ci _{Pw}	-0.5141 rad ⁻¹		
۹.,,,	7.9041 rad ⁻¹	9.4	7.7681 rad ⁻¹	X _{eey}	62.73 n	۹.,	7.8049 rad ⁻¹	x/c,	0.2760	с _{ір,}	-0.0118 rad ⁻¹		
٩.,	7.9041 rad ⁻¹	9 ₉₈	7.7681 rad ⁻¹	Z _{aliy}	24.76 *	9 _{0,0010}	6.2800 rad ⁻¹	(dα/dβ),	-0.1264	Ci _{Py}	0.0000 rad ⁻¹		
	High Lift Devices Table												
# High Lif	ft Device c/	.w %	S <mark>/S</mark> w ⁵ deg										
1 Single :	Slotted Flap 30	.0	0.506 0.0										
CII Boulder	Advanced Aircraft Ana	lysis 4 ft Proi	ect 12/12/18 10:2	24 am									

Fig. 67 Roll rate related derivatives

	Roll Rate Related Derivatives: Yawing Moment: Flight Condition 1													
							Input Parameters							
Attude	30000 #	CL _{Monteen}	5.3706 rad ⁻¹	Z _{c/^Aw}	2.00 ft	Z _{×h}	6.00 ft	X _{apony}	60.00 ft	(Vc) _{1,}	12.0 %	SM	56.96 %	
ΔΤ	0.0 deg F	S _w	837.00 n ²	Z _{tew}	2.50 ft	Z _{ic,}	5.00 ft	Zapasy	15.00 ft	η,	1.000			
U1	350.00 kts	AR _w	8.00	G _{erw} gm-o	6.3598 rad ⁻¹	s,	137.00 ft ²	Ci _{arv®M+0}	6.2800 rad ⁻¹	h _u	2.50 [#]			
α	0.00 deg	λ. <u></u>	0.60	° _{n™®M+0}	6.3598 rad ⁻¹	AR,	3.00	с _{ізуv®M=0}	6.2800 rad ⁻¹	r,	2.00]		
a _{wo clean}	-3.0 deg	Λ _{el4} _w	0.0 deg	Sh	190.00 f ²	h _e	0.80	f _{010,}	1.00	X _{eg}	24.32 *]		
i.	-1.0 deg	5	0.0 deg	X _{×h}	61.30 ft	Λ _{σ⁴ν}	5.0 deg	(Vc),	12.0 %	Z _{og}	2.95 [±]			
		-					Output Parameters			-		-		
М,	0.594	9 ₉₇	7.9041 rad ⁻¹	Z _{æv}	24.76 ft	۹	7.8049 rad ⁻¹	x/c,	0.2760	C _{ppinp}	0.0000 rad ⁻¹	C _{np}	-0.0193 rad ⁻¹	
Cl _{wdnpaf}	0.1875	9 ₉₄	7.9041 rad ¹	AR _{rat}	4.32	٩.,	7.8049 rad ⁻¹	(dα/dβ) _v	-0.1264	C.,Pw	-0.0193 rad ⁻¹			
۹	7.9041 rad ⁻¹	X _{my}	62.73 n	۹.,	7.8049 rad ⁻¹	c _{xp}	-4.5029 red ⁻¹	с _{ир,}	-0.8302 red ⁻¹	C _{np}	0.0000 rad ⁻¹			
		High Lift De	vices Table											
# High L	lift Device ⁿ i	% r	。% c/c _w %	³ deg										
1 Single	Slotted Flap 9.0	. 5	5.5 30.0	0.0										

Fig. 68 Roll rate related derivatives

					Yaw Rate Related Derivati	ves: Sideforce	: Flight Condition 1				
					Input	Parameters					
Altiude	30000 tt	α	0.00 deg	Z _{lcw}	2.50 ft	Sv	137.00 ft ²	Zapasy	15.00 ^{tt}	(t/c) _t	12.0 %
ΔΤ	0.0 deg F	Sw	837.00 ft ²	Sh	190.00 ft ²	AR,	3.00	ci _{arv@M+0}	6.2800 rad ⁻¹	η,	1.000
U1	350.00 kts	AR _w	8.00	X _{seh}	61.30 ft	λ.,	0.80	ci _{oty®M=0}	6.2800 rad ⁻¹	h _{fw}	2.50 tt
X _{op}	24.32 [#]	Λ_{old_w}	0.0 deg	Z _{sch}	6.00 ft	Λ_{ci4}	5.0 deg	f _{anov}	1.00	h _{fy}	2.00 ft
Z _{og}	2.95 ft	Z _{c,[#]w}	2.00 ft	Z _{łcy}	5.00 ft	X _{apax,}	60.00 ft	(t/c) _{rv}	12.0 %		
					Outpu	t Parameters					
М1	0.594	Z _{acy}	24.76 1	о _{ю,} ,	7.8049 rad ⁻¹	9 _{0,}	7.8049 rad ⁻¹	x/c _v	0.2760	с _{ур,}	-0.8302 rad ⁻¹
X _{sev}	62.73 t	AR _{vef}	4.32	с _{іен} ,	7.8049 rad ⁻¹	C _{Np}	-4.5029 rad ⁻¹	(dɑ/dß),	-0.1264	C _{y,}	0.7794 rad ⁻¹

Fig. 69 Yaw rate related derivatives

						Yaw Rate R	elated Derivatives: Rolling I	doment: Fligh	t Condition 1			
							Input Parameters					
Attude	30000 #	CL _{We clean}	5.3706 rad ¹	5 _{9.w}	0.0 deg	X _{eeh}	61.30 ft	Λ_{64}	5.0 deg	(l/c),	12.0 %	Z _{op} 2.95 ft
ΔΤ	0.0 deg F	S _w	837.00 t ²	Z _{c/4} w	2.00 ft	Z _{ech}	6.00 ft	X _{apery}	60.00 ft	(t/c) _V	12.0 %	
U1	350.00 kts	AR _e	8.00	Z _{ku}	2.50 R	z _{ky}	5.00 n	Z _{apov}	15.00 1	η,	1.000	
α	0.00 deg	λ _w	0.60	9. BW-0	6.3598 rad ⁻¹	s,	137.00 ft ²	9 _{9,0} 80-0	6.2800 rad ⁻¹	h _y ,	2.50 1	
α _{wo deen}	- 3.0 deg	Λ_{cl}_w	0.0 deg	9.00 BM+0	6.3598 rad ⁻¹	AR,	3.00	9 _{92,@M-0}	6.2800 rad ⁻¹	nç.	2.00	
i.	-1.0 deg	Γw	5.0 deg	Sh	190.00 n ²	3.e	0.80	fann,	1.00	X _{og}	24.32 #	
							Output Parameters]
М,	0.594	9 ₉₉	7.9041 rad ¹	Z _{acy}	24.76 ft	ci _{eb}	7.8049 rad ⁻¹	x/c,	0.2760	Ci _{rtep}	0.0000 rad ⁻¹	C ₁ , 0.2663 rad ⁻¹
CL _{w dn paff}	0.1875	9 ₁₁	7.9041 rad ¹¹	AR _{var}	4.32	с _{іву}	7.8049 rad ⁻¹	(da/dβ) _v	-0.1264	с _{і,}	0.0586 rad ⁻¹	
9 ₉₇₀	7.9041 rad ⁻¹	X _{my}	62.73 ft	9. ₉₁₇	7.8049 rad ⁻¹	с _{уур}	-4.5029 rad ¹	с _{эру}	-0.8302 rad ⁻¹	c _{irv}	0.2077 rad ⁻¹	
		High Lift C	Devices Table									
# High Lift	t Device	i %	", % c/c _w %	∛ deg								
1 Single S	lotted Flap	1.0	55.5 30.0	0.0								

Fig. 70 Yaw rate related derivatives

						Yaw Rate Re	lated Derivatives: Yawing I	Moment: Fligh	t Condition 1				
		_		-		_	Input Parameters	_		_		_	
Attude	30000 #	L.	-1.0 deg	Λ_{04}	0.0 deg	X _{een}	61.30 ft	λ.,	0.80	GI00-0	6.2800 rad ⁻¹	hr _w	2.50 ft
ΔΤ	0.0 deg F	CL _{we} , dean	5.3706 rad ⁻¹	Z _{c/Mw}	2.00 ft	Z _{ich}	6.00 ft	Λ_{cl_V}	5.0 deg	f _{are,}	1.00	hr	2.00 ft
U ₁	350.00 kts	s,	837.00 t ²	Z _{Ru}	2.50 ft	Z _{ley}	5.00 ft	X _{apaxy}	60.00 ft	(l/c) _{rv}	12.0 %	X _{op}	24.32 ft
α	0.00 deg	AR _w	8.00	ē₀ _{₀w}	0.0037	s,	137.00 # ²	Z _{apasy}	15.00 ft	(Vc) _{ty}	12.0 %	Z _{og}	2.95 ft
α. _{Wo clean}	-3.0 deg	λ.,,	0.60	Sh	190.00 ft ²	AR,	3.00	9 ₉₇₂ 811-0	6.2800 rad ¹¹	η.	1.000	SM	56.96 %
				-	Output Parameters			_					
м,	0.594	Z _{ec,}	24.76	9 ₉₅ ,	7.8049 rad ⁻¹	x/c _v	0.2760	C _{n,w}	-0.0019 rad ⁻¹				
Ci _{welnpof}	0.1875	AR,	4.32	9 ₉₂	7.8049 rad ⁻¹	(da/dβ) _v	-0.1264	C _{ny}	-0.3659 rad ⁻¹				
X _{wv}	62.73 ⁿ	0 ₉₁₁	7.8049 rad ¹¹	C _{1/10}	-4.5029 rad ⁻¹	C _{10,}	+0.8302 rad ⁻¹	c _{n,}	-0.3678 rad ⁻¹				
										-			

Fig. 71 Yaw rate related derivatives

					А	irplane Lift C	oefficient and Downwash at	Alpha = 0: Fli	ght Condition 1					
					Input	Parameters								
Sw	837.00 # ²	CL _{OW}	0.1875	Sh	190.00 ft ²	η _h pof	1.000	۵ ₀	0.8 deg	CL _{aclean}	6.1586 rad ⁻¹			
CL _{owf clean}	0.1875	$\Delta C_{L_{W_{OHd}}}$	0.0000	Ci _{ha}	5.7070 rad ¹¹	α _{ho}	0.0 deg	∆ق _{ائو Hid}	0.0 deg	C _{ła}	6.1586 rad ⁻¹			
	Output Parameters													
α _{octean}	-1.6 deg	ΔC _{L_{Oh Nd}}	0.0000	CL _{Sh}	-0.0178	CL	0.1875	CL _{opol}	0.1698	CI.	0.1698			
αο	-1.6 deg	ΔC _L _{ohed}	0.0000	CL.	0.1875	CL _{oclean polit}	0.1698	CL _{oclean}	0.1698					
										_				

Fig. 72 Angle of attack related derivatives

	Elevator Related Derivatives: Flight Condition 1													
							Input Parameters							
Attude	30000 #	c _{io}	0.1698	λ _w	0.60	Sn	190.00 ft ²	$\Lambda_{\mathrm{eff}_{h}}$	0.0 deg	(t/c) ₅	12.0 %	n,	5.0 %	
ΔΤ	0.0 deg F	S.,	837.00 ft ²	e ^{ete} Baro	6.2504 rad ⁻¹	ARh	7.00	Th _{pol}	1.000	C.h.	5.7070 rad ⁻¹	η _α	95.0 %	
U1	350.00 kts	AR _w	8.00	9	6.2504 rad ⁻¹	λ _n	1.00	(t/c), _h	12.0 %	c./c,	28.5 %	δο	-0.04 deg	
				_			Output Parameters	_				_		
М1	0.594	cient.	7.7681 rad ⁻¹	9. ₁₁	7.7681 rad ⁻¹	Ci.	1.2955 rad ⁻¹	as _e	0.4231	Coly	0.0204 rad ⁻¹	Cole	0.0087 rad ⁻¹	

Fig. 73 Elevator related derivatives

						Eleva	tor Related Derivatives: Fli	ght Condition 1	1					
							Input Parameters							
Attude	30000 #	G _{en BM-0}	6.2504 rad ¹¹	λ.	1.00	(Vc)	12.0 %	η _ο	95.0 %	õ _{emin}	deg	(c _e /c _b) _{max}	%	
ΔΤ	0.0 deg F	C _{IOD} ,⊕M+0	6.2504 rad ⁻¹	$\Lambda_{\omega_{h_{h}}}$	0.0 deg	Ci _{ne}	5.7070 rad ⁻¹	ő,	-0.04 deg	ō _{emax}	deg	Number c _u /c 2		
U1	350.00 kts	Sn	190.00 ft ²	η _{1ραf}	1.000	c _e /o _h	28.5 %	(gap/C) _e	0.00 %	Number õ _e	2			
S _w	837.00 ft ²	AR	7.00	(Vc) _{rn}	12.0 %	η.,	5.0 %	Balance,	0.05	(c _a /c _h) _{min}	56			
		-		-	Outpu	t Parameters								
М1	0.594	°~	7.7681 rad ⁻¹	K _e	1.0000	au _{eo}	0.4231	Ci _{lom}	0.5482 rad ⁻¹	c _{ie,}	0.5482 rad ⁻¹			
9 ₉₃₆	7.7681 rad ⁻¹	с _{ц,}	1.2955 rad ⁻¹	ŧы _е	1.00	Cine.	2.4149 rad ⁻¹	aie	0.4231	c _{ie}	-0.0003]		

						Eleva	tor Related Derivatives: Flig	ght Condition 1					
		_				_	Input Parameters					-	
Attude	30000 #	à	0.60	о _{ев} (8м-0	6.2504 rad ⁻¹	(Vc) _{rh}	12.0 %	η.,	5.0 %	õ _{emin}	deg	Number c _e /c	2
ΔΤ	0.0 deg F	Λ_{o4}	0.0 deg	Sh	190.00 n ²	(Vc) _h	12.0 %	η _{ο_e}	95.0 %	ō _{rmax}	deg		
U1	350.00 kts	X _{apanya}	23.00 *	AR _h	7.00	Cine.	5.7070 rad ⁻¹	ō,	-0.04 deg	Number õ _e	2		
S _w	837.00 ft ²	X _{op}	24.32 ft	λ.	1.00	X _{ach}	61.30 ^{ft}	(gap/C) _e	0.00 %	(q _e /q _t) _{trin}	%		
AR _w	8.00	с _{ет @М-0}	6.2504 rad ⁻¹	η _{ηρα} τ	1.000	c./c.	28.5 %	Balance _e	0.05	(c _e /c _i) _{ras}	%		
							Output Parameters						
M ₁	0.594	9 ₉₉	7.7681 rad ⁻¹	\overline{V}_h	0.8040	K.	1.0000	ац _{ео}	0.4231	αι _ο	0.4231	C	0.0012
9. ₆₁₆	7.7681 rad ⁻¹	x _{eq}	0.0702	c.m.	-4.5884 rad ⁻¹	foela	1.00	C	-1.9416 rad ⁻¹	C _{me}	-1.9416 rad ⁻¹		

Fig. 75 Elevator related derivatives

Fig. 76 Aileron related derivatives

					Aileron Related Deriva	lives: Flight C	ondition 1				
					Input	Parameters					
Attude	30000 tt	λ	0.60	q _{еуw} @м+0	6.3598 rad ⁻¹	η _{oa}	98.0 %	ō _{a,}	0.0 deg	(c _a /c _a) _{min}	%
ΔΤ	0.0 deg F	Λ_{old}_{w}	0.0 deg	q _{ом} дино	6.3598 rad ⁻¹	(gap/C) _a	2.00 %	Number õ _a	3	(Ca/Ca)max	%
U1	350.00 kts	(1/c) _{rw}	12.00 %	c"/c"	23.8 %	Balance _a	0.05	ō _{amin}	deg	Number c _s /c	2
AR _w	8.00	(t/c) _{lw}	12.00 %	η.,	60.0 %	δ _η /δ _η	1.0000	δ _{amax}	deg		
					Outpu	Parameters					
м,	0.594	ci _{ow}	7.9041 rad ⁻¹	f _{bala}	0.85	Ci _a	0.0000	κ _{a,}	1.0000	CI _{Ja}	0.1629 rad ⁻¹
<u>q</u> 1	155.41 b	ōŋ	0.0 deg	c _{ia}	0.0000	ĸą	1.0000	с _{із,,}	0.0814 rad ⁻¹		
ci _{erw}	7.9041 rad ⁻¹	ōa	0.00 deg	CI _{lar}	0.0000	Ci _{la}	0.0814 rad ⁻¹	C12.00	0.1629 rad ⁻¹		

Fig. 77 Aileron related derivatives

	Alleron Related Derivatives: Flight Condition 1													
							Input Parameters							
Attude	30000 #	α. _{Yo clean}	-3.0 deg	AR _w	8.00	(Vc) _{tw}	12.00 %	η.,	60.0 %	õq16a,	1.0000	ō _{emin}	deg	
ΔΤ	0.0 deg F	L.	-1.0 deg	λ _w	0.60	q _{era} gn=0	6.3598 rad ⁻¹	η _ο	98.0 %	ō _{a,}	0.0 deg	õ _{nmax}	deg	
U ₁	350.00 kts	CL _{won} clean	5.3706 rad ⁻¹	Λ_{ok_w}	0.0 deg	9 ₉₂₆ 84-0	6.3598 rad ⁻¹	(gap/C) _e	2.00 %	K _{Nba}	1.0			
a	0.00 deg	s"	837.00 n ²	(Vc),	12.00 %	c,/c,,	23.8 %	Balance,	0.05	Number õ _n	3			
		_				_	Output Parameters			_				
М,	0.594	0. ₀₀ .	7.9041 rad ⁻¹	õ,	0.00 deg	CO _{Par}	0.0000	C. Map	0.0000	с. _{"ң}	0.0000	cn _{eo}	-0.0044 rad ⁻¹	
ā,	155.41	C _{Lwdnpall}	0.1875	64 <u>,</u>	0.85	C _{nali}	0.0000	C _{narp}	0.0000	c.,	0.0000	C.n.	-0.0044 rad ⁻¹	
G _{erw}	7.9041 rad ¹	ō _ŋ	0.0 deg	C _{D_{Pa}}	0.0000	C _{nari}	0.0000	C _{nap}	0.0000	C. New Jose	0.0000 rad ⁻¹			

Fig. 78 Aileron related derivatives

	Rudder Related Derivatives: Flight Condition 1														
							Input Parameters								
Attude	30000 #	Sh	190.00 n ²	AR,	3.00	fore,	1.00	nç.	2.00 ft	ō,	0.82 deg	ō, _{max}	deg		
ΔΤ	0.0 deg F	X _m	61.30 ft	2.,	0.80	(t/c),	12.0 %	η,	1.000	(gap/C),	2.00 %				
U1	350.00 kts	z _{wh}	6.00 ft	Λ_{ot}	5.0 deg	(t/c) ₁	12.0 %	c,/c,	28.5 %	Balance,	0.05				
S _w	837.00 ft ²	z _{ky}	5.00 t	9 _{9,7} gm-0	6.2800 rad ⁻¹	X _{apesy}	60.00 [#]	η.	5.0 %	Number ő,	2				
AR _w	8.00	s,	137.00 n ²	9 ₉₂ @M+0	6.2800 rad ⁻¹	Z _{apes,}	15.00 *	η.,	95.0 %	ōr _{min}	deg				
				-	Output Parameters					_					
м,	0.594	9 ₉₇₇	7.8049 rad ⁻¹	с _{хр}	-4.5029 rad ⁻¹	f _{bal,}	0.85	βı _r	-0.4356						
ā,	155.41	G ab	7.8049 rad ⁻¹	x/c,	0.2760	β:, ₀	-0.4356	C ¹⁰	0.2717 rad ¹						
AR _{iof}	4.32	Q.a.	7.8049 rad ⁻¹	K,	1.0000	C _{75ro}	0.2717 rad ¹¹	C _{y_{rudder}}	0.0000						
										-					

						Ru	idder Related Derivatives: Flig	ht Condit	ion 1				
							Input Parameters						
α	0.00 deg	c _{e,o}	0.2717 rad ¹	AR _e	8.00	λ.,	0.80	Z _{aposy}	15.00 #	η _{ογ}	95.0 %	Number ör	2
X _{op}	24.32 #	c _{n,}	0.2717 rad ⁻¹	s,	137.00 n ²	Λ_{oH_V}	5.0 deg	c,/c,	28.5 %	ō,	0.82 deg	ōr _{min}	deg
Zog	2.95 [#]	s,	837.00 [±]	AR,	3.00	X _{apes,}	60.00 [#]	η,	5.0 %	Balance,	0.05	õr _{mus}	deg
			Output Parameters			_							
C _{isto}	0.0726 rad ¹	с _{ъ,}	0.0726 rad ⁻¹	Cl _{rukler}	0.0000								

	Rudder Related Derivatives: Flight Condition 1												
				Input Parameters									
٥	0.00 deg	C. 0.2717 rad ⁻¹	AR., 8.00	λ., 0.80	Z _{spery} 15.00 ft	η., 95.0 %	Number ő, 2						
X _{og}	24.32 #	C _R 0.2717 rad ⁻¹	S _v 137.00 n ²	A _{oliv} 5.0 deg	c,/c, 28.5 %	ō, 0.82 deg	ūr _{min} deg						
Z _{oj}	2.95 ft	S _w 837.00 t ²	AR, 3.00	X _{opery} 60.00 #	n, 5.0 %	Balance, 0.05	űr _{max} deg						
		Output Parameters		_									
C _{rope}	-0.1380 rad ⁻¹	C _{nj} , -0.1380 rad ⁻¹	Cr., 0.0000										

B. AAA: Static Stability	and One	Engine	Inoperative	Analyses
---------------------------------	---------	--------	-------------	----------

	Angle of Attack Related Derivatives: Pitching Moment: Flight Candition 1													
								Input Parameters						
Attude	30000 #	f _{anow}	0.93	Xapo	23.	00 ft	Sh	190.00 ft ²	Yatash	0.00 ft	η _{bot}	1.000	D _{freebe}	6.83 ft
ΔΤ	0.0 deg F	Sw	837.00 m ²	Yot	et _w 0.0	0 ft	AR _h	7.00	(Mc) _{'h}	12.0 %	9. ₆₁₆ @M=0	6.2504 rad ⁻¹	$\Delta \bar{x}_{w_{ij}}$	-0.0451
U1	350.00 kts	AR _e	8.00	(Vc)	12,	00 %	λn	1.00	(t/c)	12.0 %	9 ₉₉ 80-0	6.2504 rad ¹¹	X _{cg}	24.32 R
0°,"81	6.3598 rad ⁻¹	λ	0.60	(Vc)	12.	00 %	Λ_{ol_h}	0.0 deg	Z _{e,Mh}	6.00 ft	fam _h	1.00		
9 ₉₁₆ 64	6.3598 rad ⁻¹	Λ_{d4}	0.0 de	g Z _{e,4}	. 2.0	n 0	Xapen	60.00 ⁿ	Γ _h	0.0 deg	w _h	2.00]	
							-	Output Parameters					-	
М1	0.594	9 ₉₇₆	7.9041 rac	e	5.3	706 rad ⁻¹	x _{wwp.off}	0.2049	x _{si,}	3.6121	dsj/da	0.3931	SM	56.96 %
ą,	155.41	Ci _{nter}	7.9041 rac	r •	5.3	724 rad ⁻¹	9 _{9m}	7.7681 rad ⁻¹	Ci _{Ne}	5.7070 rad ⁻¹	\overline{V}_h	0.8040	Ci _{b poll}	6.1586 rad ⁻¹
x _{op}	0.0702	cie.	7.9041 rac	rt X _{ees}	26.	20 ft	0. ₉₁₀	7.7681 rad ⁻¹	C.,	0.7862 rad ⁻¹	X _{sc}	30.27 [#]	c.,	6.1586 rad ⁻¹
ē.,	10.44 ^{ft}	CL _{Mandean}	5.3706 rac	i' X _{eca}	0.2	500	9 ₉	7.7681 rad ¹¹	Z _{ach}	6.00 ft	Х _{асрат}	0.6399	Crospol	-3.5082 rad ¹¹
× _{mp:w}	0.59 ft	CL _{Ww} rclean	5.3724 rac	r X _{ey}	rpati 25.	73 ft	X _{ech}	61.30 ft	(di ^g /dot) _{p.off}	0.3931	x _{sc}	0.6399	C _{ma}	-3.5082 rad ⁻¹
		High Lift	Devices Table											
u	High Lift Device	i %	n ₀ % c/c	w %	∛ deg									
1	Single Slotted Flap	1.0	55.5 30.	0	0.0									

Fig. 82 Angle of attack related derivatives

	Sideslip Related Derivatives: Yawing Moment: Flight Condition 1													
							Input Parameters							
Altiude	30000 #	λ.,	0.60	Z _{ach}	6.00 ft	X _{aposy}	60.00 #	(Vc) _{ty}	12.0 %	Z _{og}	2.95	X _{apery}	0.00 ft	
ΔΤ	0.0 deg F	Λ ₀₄ ,	0.0 deg	Z _{fev}	5.00 ft	Z _{apov,}	15.00 ft	η,	1.000	s _{Be}	383.07 # ²			
U1	350.00 kts	Z _{r,ⁱ⁴w}	2.00	s,	137.00 n ²	q _{ет} вино	6.2800 rad ⁻¹	k.	55.00 ft	hr _{0.25}	6.78			
α	0.00 deg	Z _{ku}	2.50 *	AR,	3.00	G _{en GM=0}	6.2800 rad ⁻¹	n _{Gr}	2.50 ft	h _{10.75}	5.00 ft			
S _w	837.00 n ²	Sh	190.00 n ²	λ,	0.80	fano,	1.00	nç.	2.00 1	h _{fmax}	2.00			
AR _w	8.00	X _{ech}	61.30 ft	$\Lambda_{eff_{V}}$	5.0 deg	(b/c),	12.0 %	X _{op}	24.32 1	w _{rmax}	6.78 ft]		
					Outpu	Parameters						_		
м,	0.594	Z _{wy}	24.76	۹.,	7.8049 rad ⁻¹	ж/с _v	0.2760	К _{N_{Ke}}	-0.00029	с _{"я,}	0.3897 rad ⁻¹			
Rer	93.1248 × 10 ⁶	AR, er	4.32	9 ₉₇	7.8049 rad ⁻¹	(dα/dβ),	-0.1264	Ка _{лы}	1.92878	с. ₁₉	0.3995 red ⁻¹			
X _{ac}	62.73 #	9 ₉₁ ,	7.8049 rad ⁻¹	C. ¹	-4.5029 rad ⁻¹	c. B.	-0.8302 rad ⁻¹	C _{rijky}	0.0098 rad ⁻¹					
										-				

Fig. 83 Sideslip related derivatives

	Rudder Related Derivatives: Flight Condition 1													
	Input Parameters													
α	0.00 deg	C.B.	0.2717 rad ⁻¹	AR _e	8.00	λ.,	0.80	Zapasy	15.00 t	n.,	95.0 %	Number ö,	2	
X _{op}	24.32 #	с _{ю,}	0.2717 rad ⁻¹	s,	137.00 f ²	Λ _{οί4} ,	5.0 deg	c,/c,	28.5 %	ā,	0.82 deg	õr _{min}	deg	
Z _{og}	2.95 #	Sw	837.00 ft ²	AR,	3.00	Xapery	60.00 ft	n,	5.0 %	Balancer	0.05	δ _{rmax} .	deg	
		_	Output Parameters			_								
C _{rose}	-0.1380 rad ⁻¹	C _{N,}	-0.1380 rad ⁻¹	C _{nruskie}	0.0000									

Fig. 84 Rudder related derivatives

Γ		Engine Out Control: Flight Condition 1													
		Input Parameters													
	Allfude	30000]tt ΔT	0.0	deg F	Sw	837.00	ft ²	R _w	3.00	Vs	350.00	kts	с _{пе,} [.	-0.1380 rad ⁻¹
			Output Pa	arameters											
	Vmc	420.00	kts δ _r	0.2	8 deg										
		Propeller Table													
			SHP _{set} hp	× _{prop} ft	Y _{prop} ft	Z _{prop} ft	i _{prop} deg	^Ψ prop deg	^η prop	K _{loss} %	CD propwm	C _D prop _{stop}	P _{avail} hp	T _{avail} Ib	
	#	Гуре	Input	Input	Input	Input	Input	Input	Input	Input	Input	Input	Output	Output	
	1	Propeller: On	1555	22.00	9.01	4.00	7.0	0.0	0.850	5.7	0.0000	0.0000	1246	1160	
	2	Propeller: On	0	22.00	-9.01	4.00	7.0	0.0	0.850	5.7	0.0000	0.0000	0	0]

Fig. 85 One engine out at cruise altitude and speed

Fig. 86 One engine out at takeoff altitude and speed

Input Parameters												
ude	30000 #	α	0.00 deg	c _{mu}	0.0106	c _{my}	0.0038	c.,	3.6077 rad ⁻¹	c _{tr}	0.0177	
	0.0 deg F	γ	0.0 deg	с _{ть} .	-3.5082 rad ⁻¹	с _{тур.}	+0.0251 rad ⁻¹	Ci _q	14.1354 rad ⁻¹	с _{тур}	-0.0531	
	350.00 kts	ē,	10.44	C _{rrte}	-12.7779 rad ⁻¹	c _{i,1}	0.1076	co,	0.0177	C _{Le}	0.5482 rad ⁻¹	
Teri	37689.0 lb	l _{mb}	51880.2 skug-ft ²	C _{mq}	-32,5032 rad ⁻¹	c _{iu}	0.0586	C _{Da}	0.0972 rad ⁻¹	CD.	0.0087 rad ⁻¹	
	837.00 ft ²	c,	0.0013	с _{т,}	-0.0013	Ci _a	6.1586 rad ⁻¹	c _o	0.0000	с _{тъ.}	-1.9416 rad ⁻¹	
					Outp	ıt Parameter	s					
	0.594	×s	1.1436 ^h / ₅	мт	0.0001	Biong	6860.1	⊊se	0.581	TC _{iong2}	s	
	155.41 b	Z,	-0.0510 s ⁻¹	Ма	-91.8437 s ⁻²	Ciang	58549.8	00 _{1Plana}	0.0530 and a	TC _{iong3}	8	
	45.03	Zs	-679.4278	м _{та}	-0.6576 s ⁻²	Diang	595.4	ς _{Plong}	0.093	TC _{iong4}	8	
	0.0 deg	Zà	-3.5074	Ма	-2.9565 s ⁻¹	Elong	164.2	۵ _{°3}	rad s	X.,	-0.9516	
	-0.0066 s ⁻¹	Zq	-13.7427	м	-7.5205 s ⁻¹	RH _{iong}	231228114880.2	Ça		Z:	-60.3020 ±	
	-0.0033 s ⁻¹	M _o	0.0006 1.s	Along	594.2	ange	9.9203 rad	TC _{long1}	5	M:	-50.8298 s ⁻²	

. . . T <u> </u> .124 . -1 C \mathbf{r} 1 1 21 •

	Lateral-Directional Transfer Functions: Flight Condition 1 Input Parameters													
		_					Input Parameters	-		_		_		_
Wexment	37689.0 b	S _e	837.00 n ²	6-10 C	200121.1 slug-ft ²	с _{ір}	-0.5259 rad ⁻¹	C _{np}	-0.0193 rad ⁻¹	c _{ip}	-0.1342 rad ⁻¹	с _{л.}	-0.0044 rad ⁻¹	
Atitude	30000 ft	0	0.0 deg	l	245693.0 slug-ft ²	c _{i,}	0.2663 rad ⁻¹	c _{n,}	-0.3678 rad ⁻¹	c _n	0.7794 rad ⁻¹			
ΔΤ	0.0 deg F	α	0.00 deg	1.e. ₀	4375.6 slug-ft ²	с _{тр}	0.3995 rad ⁻¹	с. ₁₈	+0.9179 rad ⁻¹	C _{Ra}	0.0000 rad ⁻¹			
U1	350.00 kts	b _e	81.83 ft	Ci _p	-0.3025 rad ⁻¹	c _{''Yp}	0.0000 rad ⁻¹	c, _{Yp}	0.0000 rad ⁻¹	c.,	0.1629 rad ⁻¹			
					Outpu	it Parameters								
м,	0.594	Yp	-100.9699	4	0.9809 s ⁻¹	B _{lat dr}	1887.7	6	0.138	TC _{isteral2}	8			
q,	155.41 ^b	Υ _{Τβ}	0.0000	Np	17.3067 s ⁻²	C _{lat-dr}	11539.0	ຜ _{ກອ້າ}	rad 5	TC _{isteral} 3	s			
w/s	45.03	Yp	-1.0227	N _{Tp}	0.0000 s ⁻²	D _{iat-dr}	20872.2	Ç P _{lateral}		TC _{lateral4}	5			
lu _S	200121.1 skig-ft ²	Y,	5.9385	Np	-0.0578 s ⁻¹	E _{lat-dr}	24.8	т _в	839.642 5	Ye	0.0000			
luz ₃	245693.0 skg-tt ²	Lş	-16.0899 s ⁻²	Ν,	-1.1036 s ⁻¹	RH _{ist-dr}	197293681276.6	Τ _R	0.487 5	ц,	8.6636 s ⁻²			
lu _s	4375.6 skg-tt ²	Lp	-1.9372 s ⁻¹	Alardir	590.5	۵ _{°D}	4.1464 (m) 5	TC _{internal,}	5	No	-0.1923 s ⁻²			
CU Boulder	Advanced Aircraft Ana	lysis 4.0 Proj	ect 12/12/18 10:3	34 am										

Fig. 88 Lateral-directional transfer functions, frequencies, and damping response to ailerons

						Lateral-D	irectional Transfer Function	s: Flight Condi	tion 1					
		_		_		_	Input Parameters							_
Wexnert	37689.0 b	S _w	837.00 n ²	l _{on}	200121.1 slug-ft ²	Cip	-0.5259 rad ⁻¹	c.,,	-0.0193 rad ⁻¹	c _{ip}	-0.1342 rad ¹¹	c.,	-0.1380 rad ⁻¹	
Atitude	30000 1	0	0.0 deg	l _{eza}	245693.0 slug-ff ²	ci,	0.2663 rad ¹¹	c.,	-0.3678 rad ⁻¹	c _{s,}	0.7794 rad ¹¹			
ΔΤ	0.0 deg F	α	0.00 deg	l _{eg}	4375.6 slug-ft ²	с. _{'р}	0.3995 red ⁻¹	с _{7р}	+0.9179 red ⁻¹	C. _{S.}	0.2717 rad ⁻¹			
U1	350.00 kts	b _w	81.83	Cip	-0.3025 rad ⁻¹	c _{nyp}	0.0000 rad ⁻¹	с _{үгр}	0.0000 rad ⁻¹	с _{ъ,}	0.0726 rad ⁻¹			
	Output Parameters													
M1	0.594	Yg	-100.9699	L,	0.9809 s ⁻¹	B _{lat-dr}	1887.7	ŝo	0.138	TC _{interni₂}	5			
q,	155.41	Υ _{τβ}	0.0000	Ng	17.3067 s ⁻²	Clairdir	11539.0	00. ^{np} lateral	rad s	TC _{internia}	5			
w/s	45.03	Yp	-1.0227	NTp	0.0000 s ⁻²	D _{lat-dr}	20872.2	ς P _{lateral}		TC _{isterel 4}	8			
hug.	200121.1 skup-ft ²	Yr	5.9385	No	-0.0578 s ⁻¹	E _{lal-dr}	24.8	Та	839.642 8	Yą	29.8864			
l _{ezs}	245693.0 sky-ft ²	Lp	-16.0899 s ⁻²	N,	-1.1036 s ⁻¹	RH _{ist-dr}	197293681276.6	TR	0.487 8	لة,	3.8637 s ⁻²			
he ₅	4375.6 slug-ft ²	Lp	-1.9372 s ⁻¹	Alat dr	590.5	ω _{np}	4.1464 s	TC _{lateral}	\$	Ns,	-5.9794 s ⁻²			
CU Boulder	Advanced Aircraft Ana	lysis 4.0 Pro	ject 12/12/18 10:	34 am										-

Fig. 89	Lateral-directional	transfer functions.	frequencies, and	d damping res	ponse to rudder
				······································	P

-													
			Le	ongitudinal Mode Checking Flight Phase	Category B: Flight Condition 1								
	Input Parameters												
©r _{SP}	9.9203 red	Gar 0.581	ω _{ηρ_{long} 0.0530 ^{rai}}	Ç _{Plang} 0.093	Z _s -679.4278 [±] / _s	Altitude 30000 ft							
			Output	t Parameters									
n/α	21.316 ^g / _{rat}	T _{2p} \$	T _{12p} 140.700 s	Levelp=1	Level ζ_{SP} = 1	Level $\omega_{n_{\rm SP}}=2$							
						· · · · · · · · · · · · · · · · · · ·							

Fig. 90 Longitudinal mode frequencies, phugoid and short period flying quality levels

				Roll M	Mode P	erformance CheckingFlight Phase	Category	B, Cruise: Flight Condition 1					
						Input Parameters							
Attude	30000 #	U1 350.00 kts	b _w	81.83 #	Ci _p	-0.5259 rad ¹	c./c.,	23.8 %	ða _{rma}	25.0 deg	ta _{req}	1.9 5]
ΔΤ	0.0 deg F	S _w 837.00 ${\rm ft}^2$	l _{eng}	200121.1 slug-ft ²	Ci _{lao}	0.1629 rad ⁻¹	an _{nax}	25.0 deg	TR	0.487 s			
		Output Parameters			_								
Level T	a = 1	Level $\phi_1 = 1$	Φ_{echast}	115.3 deg									

Fig. 91 Roll mode performance and flying quality level

	Spiral and Dutch Roll Mode Checking Flight Phase Category B,Cruise: Flight Condition 1											-	
					Input	Parameters							
Attude	30000 #	s,	837.00 f ²	Lz.9	245693.0 slug-ff ²	c.,	-0.0193 rad ¹¹	C _{ip}	-0.5259 rad ⁻¹	6 0	0.138		
ΔΤ	0.0 deg F	b.,	81.83 [#]	lw _a	4375.6 slug-ft ²	c _{n,}	-0.3678 rad ⁻¹	c _{i,}	0.2663 rad ⁻¹	та	839.642 5		
U1	350.00 ids	log	200121.1 slug-ft ²	c _{ng}	0.3995 rad ⁻¹	C _{ip}	-0.3025 rad ¹¹	۵ _{°D}	4.1464				
		_					Output Parameters						_
(MR)o	0.8797	т ₂₅	8	т ₁₂₅	581.996 5	Level ₅ = Stable		Level Ç ₀ = 1		Level $\omega_{\gamma_D} = 1$		Level အ _{ဂျပ} ်ဝ = 1	

Fig. 92 Spiral and dutch roll fling quality levels

					Spiral a	and Dutch Roll	Mode Checking Flight Pha	se Category I	3,Cruise: Flight Condition 1			
	Input Parameters											
Attude	30000 #	S,	837.00 m ²	lur _s	245693.0 slug-ft ²	c _{n,}	-0.0193 rad ⁻¹	c _i ,	-0.5259 rad ⁻¹	50	0.138	
ΔΤ	0.0 deg F	b _w	81.83 [#]	la _s	4375.6 slug-tt ²	c _{n,}	-0.3678 rad ⁻¹	c _{i,}	0.2663 rad ⁻¹	та	839.642 5	
U1	350.00 kts	hu ₅	200121.1 slug-ft ²	c _{ng}	0.3995 rad ⁻¹	Ci _p	-0.3025 rad ¹¹	۵ _{۳۵}	4.1464 (a)			
				_			Output Parameters	_		_		
j¢/βlp	0.8797	т ₂₅	s	T125	581.996 \$	Levels = Stable		Level Ço= 1		Level $\omega_{\gamma_D} = 1$		Level a _{np} Go = 1

Fig. 93 Spiral and dutch roll fling quality levels